

(a) Homeland Security

TEMPORAL IDENTIFICATION OF CRIMINAL PROFILES AND ACTION PHASES FROM COMMUNICATIONS METADATA DURING SURVEILLANCE INVESTIGATIONS

Benchmark vs. Logistic Regression, Random Forest, Boosted Tree & Neural Network

UC#11-2024/06 (v5.2)

xtractis.ai

PROBLEM DEFINITION

GOAL	Design an Al-base activities by analyz the content of telep	d decision system that accurately identifies risky behavior linked to criminal ing communication metadata from surveillance investigations, without accessing shone calls and rationally predicts dangerous Homeland Security situations.				
PROS & BENEFITS	 Identify specif knowledge by communication 	ic metadata characterizing different criminal activities and enhance expert helping intelligence specialists understand the causal relationships between the profiles and the roles inside criminal organizations.				
	 Help intelligend strategy of the 	ce services detect attacks as early as possible and understand the underlying criminals in order to consider measures to thwart future attacks.				
	 Avoid many fall 	se alarms thanks to transparent diagnosis.				
REFERENCE DATA Source: Confidential data produced by	Variable to Predict	The model predicts the type of sender profile [Banal, Support, Executant, Chief] and the associated temporal phase phase [P1 Initialization, P2 Gathering, P3 Planning, P4 Execution] for a total of 10 feasible combinations (10 possible classes): BNL SUP_P2 SUP_P3 SUP_P3 EXEC_P2 EXEC_P3 EXEC_P4 CHIEF_P2 CHIEF_P3 CHIEF_P4				
ATOS-BDS-MCS (EVIDEN)	Potential Predictors	Each communication is described by 29 to 37 metadata . These metadata are combined and aggregated over time to obtain 321 potential predictors [NUM_SMS_2Days: Number of SMS-type communications over the last 2 days, COMVOLUME: Duration of the call in progress].				
	Observations	2,492,273 communications within 7 scenarios . Data are divided into a Learning Dataset for model induction using Training, Validation, and Test Datasets, and an External Test Dataset (involving 6 scenarios) to check the top-model's performance on real data and for benchmarking.				
Learning D Training (434,150 BNL SUP_P2 SUP_ 57.84% 11.83% 0.95	Dataset: 809,554 cases 32.5 53.63%), Validation (160,399 19.81 P3 SUP_P4 EXEC_P2 EXEC_P3 % 0.16% 23.15% 2.19%	% (no duplicates) External Test Dataset: 1,682,719 cases 67.5% (no duplicates) %), Test (215,005 26.56%) External Test Dataset: 1,682,719 cases 67.5% (no duplicates) XEC_P4 CH_P2 CH_P3 CH_P4 0.37% 3.17% 0.30% 0.04% 0.98% 0.12% 28.72% 1.87% 0.37% 4.26% 0.31% 0.04%				
MODEL TYPE	Regressi	on Multinomial Classification Binomial Classification Scoring				

XTRACTIS-INDUCED DECISION SYSTEM

☑ Intelligible Model, Explainable Decisions	 The top-model is a decision system composed of 12 gradual rules without chaining. Each rule uses from 3 to 12 predictors among the 24 variables that XTRACTIS automatically identified as significant (out of the 321 Potential Predictors). Only a few rules are triggered at a time to compute the decision.
High Predictive Capacity	It has a good Real Performance for all 6 External Test Dataset scenarios (on unknown data).
☑ Ready to Deploy	It computes real-time predictions up to 70,000 decisions/second, offline or online (API).

XTRACTIS for Homeland Security: Temporal Identification of Criminal Profiles and Action Phases from Communications Metadata during Surveillance Investigations – June 2024 1/6 © Z. ZALILA & INTELLITECH [intelligent technologies]. 2002-2024. All Rights Reserved.

STEPS			₽	٢	•••• ====	Profile type & time phase
	Reference Data	INDUCTION	XTRACTIS Top-Model	New Cases	DEDUCTION	Automated Decision (identify behavior profile & time phase)
SOFTWARE ROBOTS	Delivers the decis	XTRACTIS [®] REV	EAL re & Performance Reports	Delivers the	XTRAC decision + the Pre	TIS [®] PREDICT ediction Report explaining its reasoning

TOP-MODEL INDUCTION

XTRACTIS PROCESS

INDUCTION PARAMETERS	1.	We launch 464 inductive reasoning strategies; each strategy is applied to the same single partition of the learning dataset (52.6% Traticing (10.9% Validation (20.6% Trat) to part a policity	Total number of induced unitary models 464 IVEs		
XTRACTIS* REVEAL v12.2.44349		(53.6% Training / 19.8% Validation / 26.6% Test) to get a reliable assessment of the descriptive and predictive performances, respectively from Training and Validation Datasets.	Criterion for the induction optimization Average F ₂ -Score		
	2. 3.	Each strategy thus generates one unitary model called Individual Virtual Expert (IVE).	Validation criterion for the top-model selection		
		Among the 464 induced models, the top-IVE selected is the	Average F ₂ -Score		
		one that has the best predictive performance, close to its descriptive performance, and with the best intelligibility, i.e.,	Duration of the process @ Induction Speed FP64		
		with the fewer predictors and rules.	35 days @ 24 Tflops		

TOP-MODEL STRUCTURE The top-IVE has a very good intelligibility as it has **12 rules** combining **24 predictors**, with 6.3 predictors per rule on average.

Its Structure Report reveals all the internal logic of the decision system and ensures that the model is understandable by the human expert. It is a transparent model that can be audited and certified before deployment to end-users.

PREDICTORS

- 24 continuous metadata (out of 321)
- Ranked by impact significance (7 strong, 4 medium & 13 weak signals): #1 NUM_UNIQUE_USED_DEVICE_SMS_14Days .../../ #11 VARPRC_OVERALL_NUM_VOICE_14_21Days ...
- Labeled by fuzzy and binary classes
 Examples: binary interval "sup to 176,639";
 fuzzy interval "inf to about 4.91e+005"

RULES

- 12 connective fuzzy rules without chaining (aggregated into 10 disjunctive fuzzy rules)
- 3 to 12 predictors per rule (on average, 6.3 predictors per rule)
- Example: fuzzy rule R6 uses 4 predictors and concludes "EXEC_P2" (Profile Executant, Phase Grouping). 11 other fuzzy rules complete this model.

IF	COMDURATION_MEAN_ALLDEVICE_14D	IS	inf to ~4.91e+005
AND	NUM_UNIQUE_USED_DEVICE_1D	IS	sup to ~1.99
AND	OVERALL_COMDURATION_MIN_21D	IS	sup to 176,639
AND	VARPRC_OVERALL_NUM_SMS_3_7D	IS	sup to ~-57.0
THEN	Sender Profile_Phase	IS	EXEC_P2

Literally, intercepted communication is that of an EXECUTANT in Gathering Phase if his mean duration of communication, during the last 14 days, is inferior to 8'11", and his number of different devices used, during the last 24h, is 2 or more, and the group's minimum duration of communication, during the last 21 days, is superior to 2'57", and the relative change in group's number of SMS, between the last 3 and the last 7 days, is superior to -57%.

TOP-MODEL PERFORMANCE

The top-IVE performances, measured in Training / Validation / Test, then in External Test for each of the 6 scenarios, guarantee the model's predictive and real performances.

CACE

EXPLAINED PREDICTIONS FOR 2 UNKNOWN CASES

XTRACTIS® PREDICT v12.2.44349 Powered by:

(from the External Test Dataset, i.e., not included in the Learning Dataset)				DEDUCTIVE INFERENCE OF RULES	AUTOMATED DECISION	
ihfgwmqida_2014-09 16:17:47.166 actual value = CHIEF	5-23 _P4	Real		For this communication, 4 rules are triggered: R12 at 0.715, R11 at 0.453, R10 at 0.061 and R3 at 0.027	NUMBER OF TRIGGERED RULES 4 / 12	
COMDURATION_MEAN_7D	1.83e+005	Time		The 8 other rules are not activated.	FUZZY PREDICTION	
NUM_UNIQUE_TMSI _RECEIVER_SMS_3D	Missing Value				{ CHIEF_P4 0.715, CHIEF_P3 0.453,	
NUM_UNIQUE_USED _DEVICE_SMS_14D	6.00			Rule Firing Degree	CHIEF_P2 0.061, SUP P2 0.027 }	
NUM_VOICE_ALLDEVICE_1D	4.0			0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0		
			R12	\rightarrow CHIEF_P4		
OVERALL_COMDURATION _MIN_21D	80,186		811	→ CHIEF_P3	(offici _i +)	
VARPRC_NUM_UNIQUE _TMSI_RECEIVER_1_2D	0.0		10 F	→ CHIEF_P2	The system delivers the correct diag compared to that given by the	
VARPRC_NUM_VOICE_ALLDE VICE_7_14D	-61.2		13 H	→ SIIP P2		
VARPRC_OVERALL_NUM _SMS_1_2D	-49.7		~		Profile CHIEF, Phase EXECUTION	
VARPRC_OVERALL_NUM _VOICE_7_14D	-50.7)			U	

••)

 $(\mathbf{\dot{U}})$

OMATED DECISION

4 / 12
FUZZY PREDICTION
{ CHIEF_P4 0.715,
CHIEF_P3 0.453,
CHIEF_P2 0.061,
SUP_P2 0.027 }
FINAL PREDICTION
{ CHIEF_P4 }
The system delivers the correct diagnosis compared to that given by the intelligence expert:

For this communication, 8 rules are triggered: R5 at 0.946, R2 at 0.860, R11 at 0.194... The 4 other rules are not activated.

NUMBER OF TRIGGERED RULES 8/12 FUZZY PREDICTION { SUP_P4 | 0.946 BNL | 0.860, CHIEF_P3 | 0.194, EXEC_P4 | 0.048, SUP_P3 | 0.041 EXEC_P3 | 0.039 SUP_P2 | 0.014 CHIEF_P2 | 0.013 } FINAL PREDICTION

{ SUP_P4 }

The system delivers the correct diagnosis compared to that given by the intelligence expert, although it considered that it could also be a Banal behavior with a closer possibility:

> Profile SUPPORT. **Phase EXECUTION** .

TOP-MODELS BENCHMARK

		XTRACTIS 😨	LOGISTIC REGRESSION	RANDOM FOREST	BOOSTED TREE	NEURAL NETWORK	
ŝ	MODELS RELEASE	2023/01	2023/01	2023/01	2023/01	2023/01	
IETER	ALGORITHM VERSION	XTRACTIS REVEAL 12.2.44349	Python 3.9 Scikit-Learn 1.3.0	Python 3.9 LightGBM 3.3.2	Python 3.9 LightGBM 3.3.2	Python 3.9 TensorFlow 2.10.0 Keras 2.10.0	
PARAM	CROSS-VALIDATION Technique	All explored strategies fo	r all algorithms use the same single-s	split of the Learning Dataset: 60% Trai	ning 20% Validation 20% Test		
DELING	NUMBER OF EXPLORED STRATEGIES ⁽¹⁾	464 induction strategies	1,000 data analysis strategies	1,000 ML strategies	1,000 ML strategies	1,000 ML strategies	
MOI	TOP-MODEL SELECTION ⁽²⁾	Top-IVE among 464 IVEs	Top-IVE among 1,000 IVEs	Top-IVE among 1,000 IVEs	Top-IVE among 1,000 IVEs	Top-IVE among 1,000 IVEs	

TURE	NUMBER OF PREDICTORS (out of 321 Potential Predictors)	24	321	299	313	321
el struc'	AVERAGE NUMBER OF PREDICTORS PER RULE OR EQUATION	6.3 per rule	321.0 per equation	8.3 per rule	6.1 per rule	117.6 per equation
-MODI	STRUCTURE OF THE DECISION SYSTEM	12 fuzzy rules without chaining (aggregated into 10 disjunctive fuzzy rules)	10 linear equations	500 trees without chaining 20,216 binary rules	10 chains of 309 trees each 49,797 binary rules	2 hidden layers 22 hidden nodes 32 equations
ТОР		Only a few rules are triggered at a time to compute a decision			Tree #N corrects the error of the N-1 previous trees	22 unintelligible synthetic variables

S		Random ⁽³⁾	XTRACTIS	LoR	RFo	BT	NN	UC11	0	INTELLIGIBILITY Score
CORE	INTELLIGIBILITY Score ⁽⁴⁾		3.20	0.00	0.00	0.00	0.00	0 -2	вт	XTRACTIS
TOP-MODEL S	IVE Real Perf. (Average F ₂ -Score) in Test Gap to Leader in Test IVE Real Perf. (Average F ₂ -Score) in External Test Gap to Leader in External Test IVE Average Real Performance PERFORMANCE Score ⁽⁴⁾	7.79%	89.82 0.00 87.23 0.00 88.53 0.00	78.89 -10.93 76.46 -10.77 77.68 -10.85	77.83 -11.99 79.19 -8.04 78.51 -10.02	89.54 -0.28 87.14 -0.09 88.34 -0.18	84.20 -5.62 64.47 -22.76 74.34 -14.19	-4 -6 -8 -10 -12 -12 -14 -14 -16	RFo Lor	

(1) For all algos: on the same Learning Dataset. All Models are optimized according to their Validation Average F₂-Score.
 (2) All top-models are selected according to their Validation Average F₂-Score while checking that it remains close to their Training Average F₂-Score.

(2) and produces that models must exceed to perform have lager 2 bodies in a click with a click of the number of the second method in a click of the second method in a click of the second method. (3) Baseline performances that models must exceed to perform better than chance (P-value = 0.001; 100,000 models generated by random permutation of the output values). The value of each performance criterion is generally achieved by a different random model. (4) See Appendices for explanations and detailed results. Performance Scores are calculated on all available unknown data.

More Use Cases: xtractis.ai/use-cases/

XTRACTIS for Homeland Security: Temporal Identification of Criminal Profiles and Action Phases from Communications Metadata during Surveillance Investigations – June 2024 © Z. ZALILA & INTELLITECH [intelligent technologies]. 2002-2024. All Rights Reserved.

APPENDIX 1 - Calculation of the Intelligibility × Performance

Al Technique #i	Ti	$i \in [1; n]$ n = number of AI Techniques benchmarked in terms of data-driven modeling = 5
Benchmark #k	B _k	k∈[1 ; p] p = number of Benchmarks for the Use Case \in {1, 2, 3}

Remarks:

- In case of a small number of reference data, a CVE model (College of Virtual Experts) is generated by each explored
 strategy of T_i, generally via an N×K-fold cross validation. In this case, a Benchmark is led with the top-CVE on the
 External Test Dataset (ETD, composed of unknown reference cases). Then, a top-IVE model (Individual Virtual Expert)
 is generated from the top-CVE, through the XTRACTIS[®] reverse-engineering process, or for the other T_i, by applying
 the top-strategy, which has generated the top-CVE, on the Training and Validation Datasets. And a second Benchmark
 is led with this top-IVE on the same ETD.
- In case of a huge number of reference data, an IVE is generated by each explored strategy of Ti, via a 1-split validation. In this case, Benchmarks are led with the top-IVE on the Test Dataset (TD, composed of unknown reference cases) and on the available ETDs.
- Each Benchmark uses the latest versions of the following algorithms available at the date of the benchmark. XTRACTIS[®]: REVEAL; Logistic Regression: Python, Scikit-Learn; Random Forest & Boosted Tree: Python, LightGBM; Neural Network: Python, TensorFlow, Keras.
- Each B_k uses exactly the same TD and ETD for each T_i model.
- No Regression models can be obtained by Logistic Regression. So, this Data Analysis technique is benchmarked only for Classification or Scoring problems.
- The Holy Grail for critical Al-based decision systems is to obtain a model with the highest Performance and the highest Intelligibility scores (top-right corner of the graph).

PERFORMANCE Score

For each B_{k} , we calculate the values of the Performance Criterion (PC) on the same ETD for all the T_i top-CVEs; and on the same TD and ETDs for all the T_i top-IVEs. The PC is: RMSE in percentage for a Regression; F_1 -Score for a Binomial Classification; Average F_1 -Score or Average F_2 -Score for a Multinomial Classification; Gini index for a Scoring. Then, we compare the value of the PC of each T_i top-CVE (resp. top-IVE) to the best value of this PC reached by the best T_i top-CVE (resp. top-IVE) on ETD (resp. on TD and ETDs).

For Regression, we calculate for each T_i top-model (CVE and IVE): $PS(T_i, B_k) = Best_PC(B_k) - PC(T_i, B_k)$.

For Classification and Scoring, we calculate for each T_i top-model: $PS(T_i, B_k) = PC(T_i, B_k) - Best_PC(B_k)$.

Performance Score of T_i PS(T_i) = Mean (PS(T_i , B_k))_{k \in [1; p]}

Remark:

• Each PS varies theoretically from -100 (Lowest Score) to 0 (Highest Score), but practically between -50 and 0.

INTELLIGIBILITY Score

We consider the T_i top-IVE. Its Intelligibility Score IS(T_i) is valued from 0.00 to 5.00 regarding the structure of the model: number of predictors, classes, rules, equations, trees, synthetic variables, modalities to predict for classifications (or numeric variables to predict for regressions or scoring). The more compact the model, the higher its IS.

The IS of each T_i is obtained by accumulating the following five penalty values to the ideal IS value of 5.00 (each penalty has a null or a negative value):

Penalty 1 (logarithmic penalty regarding the number of predictors): **Pen1**(T_i) = min(0, 1 - log₁₀ number of predictors)

> Examples: Pen1 = 0.00 for up to 10 predictors Pen1 = -3.00 for 10.000 predictors

- Penalty 2 (linear penalty regarding the average number of rules or equations per modality to predict): Penalty 2 (linear penalty regarding the average number of rules or equations per modality to predict)

$Pen2(1) = \min(0),$	0.01		100			·	-)
Examples:	Pen2 = 0.00 for 1 rule of	or equation per l	modality t	o predict o	n average	2	
	Pen2 = -3.00 for 301 i	rules or equatio	ns per mo	dality to pi	redict on a	iverage	9

- Penalty 3 (linear penalty regarding the average number of predictors per rule or equation): $Pen3(T_i) = min\left(0, \frac{9-3 \times average \ number \ of \ predictors \ per \ rule \ or \ equation}{7}\right)$

> Examples: Pen3 = 0.00 for up to 3.0 predictors per rule or equation on average Pen3 = -3.00 for 10.0 predictors per rule or equation on average

Examples: Pen4 = 0.00 for 1 tree per chain Pen4 = -3.00 for 4 trees per chain

Penalty 5 (maximum penalty due to unintelligibility of synthetic variables, here for NN only): $Pen5(T_i) = -5$

Intelligibility Score of T_i

 $IS(T_i) = max(0.00, 5.00 + (Pen1+Pen2+Pen3+Pen4+Pen5))$

Remarks:

- For the difference between the Intelligibility and the Explainability of a model, please see the XTRACTIS® Brochure, page 7.
- The real complexity of the process/phenomenon under study is intrinsic, i.e., it could not be reduced or simplified, but only
 discovered; thus, the top-model will be complex if the process/phenomenon turns out to be complex [Zalila 2017].
 Consequently, for some complex process/phenomenon, IS can be equal to 3.00 or less, even if Ti natively produces intelligible
 models (XTRACTIS, Random Forest).
- For similar structures, the Boosted Tree model is always less intelligible than the Random Forest one, as it is composed of chains of trees, instead of a college of trees (see Penalty 4).
- Neural Network model has always the lowest IS of 0.00, because it uses synthetic unintelligible variables (hidden nodes) in
 addition to all the potential predictors (see Penalty 5).

APPENDIX 2 – Use Case Results (all Performance criteria of all Top-Models)

Performance Criterion	Classification Error	Min. Sensitivity	Average Sensitivity	Min. PPV	Average PPV	Average F ₂ -Score	Weighted Av. F ₂ -Score	Refusal
RANDOM MODEL Number of Random Permutations (P-value) = 100,000 (0.001)			· · ·				· · ·	
Performance against chance	81.55%	0.37%	7.79%	0.37%	7.79%	7.79 %	18.45%	
XTRACTIS TOP-MODEL								
Descriptive Performance (Training)	1 41%	74 22%	93.01%	56 22%	92 07%	92 37%	98 59%	0 (0.00%)
Predictive Performance (Validation)	1.56%	51.21%	89.63%	79.06%	94.84%	90.40%	98.42%	0 (0.00%)
Real Performance (Test)	1.06%	60.97%	90.75%	49.44%	90.87%	89.82%	98.92%	2 (0.00%)
Real Performance (External Test for 6 scenarios)	0.64%	46.37%	87.48%	54.63%	87.85%	87.23%	99.36%	0 (0.00%)
LOGISTIC REGRESSION TOP-MODEL								
Descriptive Performance (Training)	0.91%	76.09%	93.11%	91.11%	97.84%	93.93%	99.09%	
Predictive Performance (Validation)	4.21%	54.57%	82.36%	29.04%	82.37%	80.44%	95.74%	
Real Performance (Test)	2.45%	44.69%	84.64%	22.34%	81.36%	78.89%	97.52%	
Real Performance (External Test for 6 scenarios)	8.11%	44.91%	80.62%	26.85%	80.06%	76.46%	91.75%	
RANDOM FOREST TOP-MODEL								
Descriptive Performance (Training)	0.31%	93.49%	98.29%	80.48%	95.06%	97.58%	99.70%	
Predictive Performance (Validation)	8.42%	30.47%	80.66%	24.15%	73.28%	76.35%	91.82%	
Real Performance (Test)	7.18%	17.76%	85.56%	11.63%	68.95%	77.83%	93.14%	
Real Performance (External Test for 6 scenarios)	12.20%	55.29%	86.68%	20.55%	68.28%	79.19 %	88.29%	
BOOSTED TREE TOP-MODEL								
Descriptive Performance (Training)	0.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	
Predictive Performance (Validation)	2.92%	30.28%	84.92%	66.63%	91.97%	84.91%	96.97%	
Real Performance (Test)	2.08%	42.36%	89.65%	59.03%	94.12%	89.54%	97.80%	
Real Performance (External Test for 6 scenarios)	3.93%	49.74%	87.26%	57.03%	92.97%	87.14 %	95.97%	
NEURAL NETWORK TOP-MODEL								
Descriptive Performance (Training)	0.64%	78.52%	95.67%	82.20%	95.59%	95.55%	99.35%	
Predictive Performance (Validation)	2.90%	56.64%	87.76%	77.30%	89.45%	87.83%	97.06%	
Real Performance (Test)	1.81%	61.68%	87.57%	33.50%	82.59%	84.20%	98.16%	
Real Performance (External Test for 6 scenarios)	18.09%	23.19%	69.84%	32.24%	70.28%	64.47 %	81.43%	

The entirety of this document is protected by copyright. All rights are reserved, particularly the rights of reproduction and distribution. Quotations from any part of the document must necessarily include the following reference: Zalila, Z., Intellitech & Xtractis (2019-2024). XTRACTIS® the Reasoning AI for Trusted Decisions. Use Case #11 | Homeland Security: Temporal Identification of Criminal Profiles and Action Phases from Communications Metadata during Surveillance Investigations – Benchmark vs. Logistic Regression, Random Forest, Boosted Tree & Neural Network. INTELLITECH [intelligent technologies], June 2024, v5.2, Compiegne, France, 6p.