XTRACTIS®, THE REASONING AI FOR TRUSTED DECISIONS



Precision Medicine

# **VOICE-BASED DETECTION OF PARKINSON DISEASE**

Benchmark vs. Logistic Regression, Random Forest, Boosted Tree & Neural Network

UC#17 - 2024/03 (v2.0)

xtractis.ai

### **PROBLEM DEFINITION**

| GOAL                                                                                                                                                                                                                                     | Design an AI-based decision system that accurately and instantly diagnoses Parkinson disease from simple voice recordings to obtain a rational diagnosis of the patient's condition. |                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| PROS &<br>BENEFITS                                                                                                                                                                                                                       |                                                                                                                                                                                      | ameters involved in the Parkinson disease and enhance medical knowledge by<br>ogists understand the causal relationships between these parameters, their<br>of the disease.                                                                                                                                   |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                          |                                                                                                                                                                                      | al profession to make earlier and more personalized decisions through rapid, explainable diagnoses.                                                                                                                                                                                                           |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                          | <ul> <li>Use a model wit</li> </ul>                                                                                                                                                  | h simple recordings to limit medical protocols that can be costly.                                                                                                                                                                                                                                            |  |  |  |  |  |  |  |
| REFERENCE<br>DATA                                                                                                                                                                                                                        | Variable to Predict:                                                                                                                                                                 | The model diagnoses the patient's condition from the voice recordings as <b>PARKINSON   NO PARKINSON</b>                                                                                                                                                                                                      |  |  |  |  |  |  |  |
| Source:<br>Sakar, C.O., Dept of<br>Computer Engineering,<br>Bahcesehir University,<br>Istanbul, Serbes, G., Dept of<br>Biomedical Engineering,<br>Yildiz Technical University,<br>Istanbul, Gunduz, A., Dept of<br>Neurology, Cerrahpaşa | Potential Predictors:                                                                                                                                                                | 753 potential predictors, clinically useful information from various speech signal processing applied on each recording [Time Frequency Features, Mel Frequency Cepstral Coefficients (MFCCs), Wavelet Transform based Features, Vocal Fold Features and tunable Q-factor Wavelet transform (TQWT) features]. |  |  |  |  |  |  |  |
| Faculty of Medicine, Istanbul<br>University-Cerrahpaşa,<br>Nizam, H., Dept of Computer<br>Engineering, Istanbul                                                                                                                          | Observations:                                                                                                                                                                        | 756 reference voice recordings (for a total of 252 patients who sustained phonation of the vowel ' <b>a</b> ' with 3 repetitions).                                                                                                                                                                            |  |  |  |  |  |  |  |
| University-Cerrahpaşa, Sakar,<br>B.E., Dept of Software<br>Engineering, Bahcesehir<br>University, Istanbul, Türkiye.                                                                                                                     |                                                                                                                                                                                      | 642 recordings compose a Learning Dataset for model induction using Training and Validation Datasets.                                                                                                                                                                                                         |  |  |  |  |  |  |  |
| Dataset:<br>Dua, D. and Graff, C. (2019).<br>UCI Machine Learning<br>Repository<br>[http://archive.ics.uci.edu/ml                                                                                                                        |                                                                                                                                                                                      | 114 recordings compose an External Test Dataset to check the top-model's performance on real unknown data and for benchmarking.                                                                                                                                                                               |  |  |  |  |  |  |  |
| ]. Irvine, CA: University of<br>California, School of<br>Information and Computer<br>Science                                                                                                                                             |                                                                                                                                                                                      | Learning Dataset: 642 patients   84.92%<br>80% for Training, 20% for ValidationExternal Test Dataset: 114 patients   15.08%NO PARKINSONPARKINSONNO PARKINSON163   25.4%479   74.6%29   25.4%                                                                                                                  |  |  |  |  |  |  |  |

**MODEL TYPE** 

Regression

**Multinomial Classification** 

**Binomial Classification** 

Scoring

### **XTRACTIS-INDUCED DECISION SYSTEM**

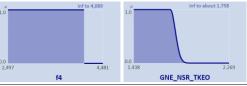
| ☑ Intelligible Model,<br>Explainable Decisions | <ul> <li>The top-model is a decision system composed of 26 gradual rules without chaining aggregated into 2 disjunctive rules.</li> <li>Each rule uses from 1 to 24 predictors among the 92 variables that XTRACTIS automatically identified as significant (out of the 753 features describing each recording).</li> <li>Only a few rules are triggered at a time to compute the decision.</li> </ul> |
|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| High Predictive Capacity                       | It has a pretty good Real Performance (on unknown data).                                                                                                                                                                                                                                                                                                                                               |
| Ready to Deploy                                | It computes real-time predictions up to 70,000 decisions/second, offline or online (API).                                                                                                                                                                                                                                                                                                              |

XTRACTIS for Precision Medicine: Voice-based Detection of Parkinson Disease – March 2024 © Z. ZALILA & INTELLITECH [intelligent technologies]. 2002-2024. All Rights Reserved.

| STEPS           | S <sup>™</sup> ()→  |                                                                                                     | ₽⊒₽                   | Ţ            | ↔<br>==   | NO PARKINSON                     |  |
|-----------------|---------------------|-----------------------------------------------------------------------------------------------------|-----------------------|--------------|-----------|----------------------------------|--|
|                 | Reference<br>Data   | INDUCTION                                                                                           | XTRACTIS<br>Top-Model | New<br>Cases | DEDUCTION | Automated D<br>(detect Parkinsor |  |
| SOFTWARE ROBOTS | Delivers the decisi | XTRACTIS <sup>®</sup> PREDICT<br>Delivers the decision + the Prediction Report explaining its reaso |                       |              |           |                                  |  |

### **TOP-MODEL INDUCTION**

**XTRACTIS PROCESS** 


| INDUCTION<br>PARAMETERS            | 1.                                                                                                    | the Learning Dataset                                                                                                                                              | 5 5                                                                 | ach strategy is applied to 20<br>ment of the descriptive ar   | •                                                 |  |  |  |  |
|------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------|--|--|--|--|
| Powered by:                        | 2.                                                                                                    | 5, 5                                                                                                                                                              | erates 100 unitary models (<br>sible operators into a <b>Colleg</b> | called Individual Virtual Expe<br>e of Virtual Experts (CVE). | ert (IVE), whose decisions are                    |  |  |  |  |
| XTRACTIS*<br>REVEAL<br>v13.0.45667 | 3.                                                                                                    | Among the 3,000 induc<br>rules share 464 predict                                                                                                                  |                                                                     | the best predictive performa                                  | nce remains complex: 2,014                        |  |  |  |  |
|                                    |                                                                                                       |                                                                                                                                                                   | eference cases in the referer<br>a more intelligible model:         | nce dataset, the XTRACTIS <b>C</b>                            | /E→IVE Reverse-Engineering                        |  |  |  |  |
|                                    | 4.                                                                                                    | We build a synthetic dataset composed of 32,100 new cases simulated by deduction from the top-CVE, around the 642 original learning cases but distinct from them. |                                                                     |                                                               |                                                   |  |  |  |  |
|                                    | 5.                                                                                                    | We apply 500 induction strategies to the same single 34% Training   33% Validation   33% Test partition of this new dataset: XTRACTIS induces 500 IVEs.           |                                                                     |                                                               |                                                   |  |  |  |  |
|                                    | 6. The top-IVE selected is the one that is the most intelligible while being as efficient as the top- |                                                                                                                                                                   |                                                                     |                                                               |                                                   |  |  |  |  |
|                                    |                                                                                                       | Total number of induced unitary models                                                                                                                            | Criterion for the induction optimization                            | Validation criterion for the top-model selection              | Duration of the process<br>(Induction Power FP64) |  |  |  |  |
|                                    |                                                                                                       | 100,500 IVEs                                                                                                                                                      | F <sub>1</sub> -Score                                               | F <sub>1</sub> -Score                                         | 75.8 days (1 Tflops)                              |  |  |  |  |

The top-IVE model has a rather poor intelligibility as it combines 92 predictors into 26 rules with 9.3 predictors per rule on average. But it remains acceptable given the high level of complexity of the phenomenon having initially 753 potential predictors. This model's Structure Report reveals all the internal logic of the decision system and ensures that the model is understandable by the human expert. It is a transparent model that can be audited and certified before deployment to end-users.

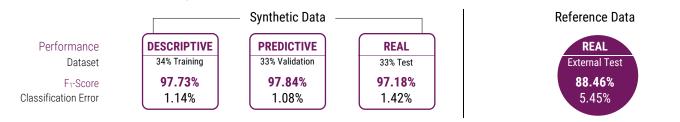
#### PREDICTORS

- 92 features identified out of 753
- Ranked by individual contribution

   (1 strong, 20 medium & 70 weak signals):
   #1 tqwt\_maxValue\_dec\_19 / #2 tqwt\_stdValue\_dec\_5 /...
- Labeled by nominal, binary, and fuzzy classes Examples: binary nominal "{Male}" binary interval "inferior to 4,089" fuzzy interval "inferior to about 1.758



#### RULES


- 26 connective fuzzy rules without chaining (aggregated into 2 disjunctive fuzzy rules)
- 1 to 24 predictors per rule (on average, 9.3 predictors per rule)
- Example: fuzzy rule R8 uses 6 predictors and concludes PARKINSON. 25 other rules complete this model.

| IF   | gender               | IS {Male}             |
|------|----------------------|-----------------------|
| AND  | f4                   | IS inferior to 4,089  |
| AND  | GNE_NSR_TKEO         | IS inferior to ~1.758 |
| AND  | tqwt_energy_dec_18   | IS inferior to ~0.206 |
| AND  | tqwt_minValue_dec_9  | IS superior to ~0.142 |
| AND  | tqwt_maxValue_dec_26 | IS inferior to ~1.12  |
| THEN | l Diagnosis          | IS PARKINSON          |
|      |                      |                       |

#### TOP-MODEL PERFORMANCE

STRUCTURE

The top-IVE performances, measured in Training/Validation/Test on synthetic data, then in External Test on reference data, guarantee the model's predictive and real performances.



0.757

0.853

Male

0.821

0.668

Male

0.834

0.579

Female

...

...

CASE

(from the External Dataset, i.e., not included in the Learning Dataset)

**RECORDING #217** 

actual value = PARKINSON

**RECORDING #34** 

actual value = NO PARKINSON

**RECORDING #53** 

actual value = PARKINSON

PPE

DFA\*

gender

PPE

DFA

gender

PPF

DFA

gender

## **EXPLAINED PREDICTIONS FOR 3 UNKNOWN CASES**

 $\hat{(}$ 

Real

Time

٢

Real

Time

 $(\mathbf{\hat{n}})$ 

Real

Time

USE CASE - HEALTH / PHARMA Powered by: XTRACTIS® PREDICT v13.0.45667 **DEDUCTIVE INFERENCE OF RULES AUTOMATED DECISION** For this patient, 4 rules are triggered: NUMBER OF TRIGGERED RULES R5 and R8 are fired at 1.000, and R1 at 0.441 to 4/26 conclude PARKINSON, R21 at 0.006 to conclude NO PARKINSON FUZZY PREDICTION 22 other rules are not activated. {PARKINSON | 1.000, Rule Firing Degree NO PARKINSON | 0.006 } 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 FINAL PREDICTION ŝ { PARKINSON } 2 → PARKINSON The system delivers a correct → PARKINSON 2 detection compared to the observed case: → NO PARKINSON 5 PARKINSON For this patient, 7 rules are triggered: NUMBER OF TRIGGERED RULES R20 is fired at 0.843, R18 at 0.636, R24 at 0.535 and 7/26 R21 at 2.16e-04 to conclude NO PARKINSON, R3 at 0.445, R1 at 0.455 and R8 at 6.32e-08 to FUZZY PREDICTION conclude PARKINSON. { NO PARKINSON | 0.843. 19 other rules are not activated. PARKINSON | 0.638 } Rule Firing Degree 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 FINAL PREDICTION { NO PARKINSON } **R**20 → NO PARKINSON R18 → NO PARKINSON R24 NO PARKINSON The system delivers a correct • NO PARKINSON **R21** detection compared to the 22 → PARKINSON observed case: 2 NO PARKINSON 22  $\rightarrow$  PARKINSON

For this patient, 8 rules are triggered: **R12** is fired at 1.000, **R1** at 0.628, **R11** at 0.601, **R15** at 0.013 and **R14** at 0.001 to conclude PARKINSON, **R22** at 1.000, **R26** at 0.988 and **R21** at 0.003 to conclude NO PARKINSON.

16 other rules are not activated.



 NUMBER OF TRIGGERED RULES

 8 / 26

 FUZZY PREDICTION

 {PARKINSON | 1.000,

 NO PARKINSON | 1.000 }

 FINAL PREDICTION

 REFUSAL

More reference data near this recording profile should eliminate the undecidability of the updated model in this decision space area.

\*Predictor value outside the variation range of the model but inside the allowed extrapolation range. XTRACTIS will refuse to give a result for an extrapolation far from the allowed extrapolation range. It is one situation of the" Refusal" prediction.

### **TOP-MODELS BENCHMARK: DECISION STRUCTURE & INTELLIGIBILITY × PERFORMANCE SCORES**

|                   |                                                 | XTRACTIS 😨                                                                                                                         | LOGISTIC REGRESSION                                             | RANDOM FOREST                                        | BOOSTED TREE                                         | NEURAL NETWORK                                       |
|-------------------|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|
| S                 | MODELS RELEASE                                  | 2023/05                                                                                                                            | 2023/05                                                         | 2023/05                                              | 2023/05                                              | 2023/05                                              |
| ETERS             | ALGORITHM VERSION                               | XTRACTIS REVEAL 13.0.45667                                                                                                         | Python 3.9.10   Scikit-Learn 1.1.2                              | Python 3.9.10   LightGBM 3.3.2                       | Python 3.9.10   LightGBM 3.3.2                       | Python 3.9.10   TensorFlow 2.10.0   Keras 2.10.0     |
| PARAME            | CROSS-VALIDATION<br>Technique                   | 20×5 folds for each CVE model. Then<br>1-Split Validation for each IVE model:<br>34% Training   33% Validation   33% Test          | 20×5 folds for each CVE model                                   | 20×5 folds for each CVE model                        | 20×5 folds for each CVE model                        | 20×5 folds for each CVE model                        |
| <b>MODELING F</b> | NUMBER OF EXPLORED<br>STRATEGIES <sup>(1)</sup> | 1,000 induction strategies for the CVE on<br>Training / Validation data. 500 induction<br>strategies for the IVE on synthetic data | 1,000 data analysis strategies<br>on Training / Validation data | 1,000 ML strategies<br>on Training / Validation data | 1,000 ML strategies<br>on Training / Validation data | 1,000 ML strategies<br>on Training / Validation data |
| МОР               | TOP-MODEL SELECTION <sup>(2)</sup>              | Top-CVE among 3,000 CVEs.<br>Then Top-IVE among 500 IVEs                                                                           | Top-CVE selected am                                             | ong 1,000 CVEs, then single model o                  | btained by applying best CVE strateg                 | y on 100% of the Learning Dataset                    |

| TURE     | NUMBER OF PREDICTORS<br>(out of 12,600 Potential Predictors) | 92                                                                                 | 610                | 366                                          | 431                                                  | 753                                               |
|----------|--------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------|----------------------------------------------|------------------------------------------------------|---------------------------------------------------|
| EL STRUC | AVERAGE NUMBER<br>OF PREDICTORS<br>PER RULE OR EQUATION      | 9.3 per rule                                                                       | 610.0 per equation | <b>7.5</b> per rule                          | <b>4.7</b> per rule                                  | 254.6 per equation                                |
| -MODEL   | STRUCTURE OF THE<br>DECISION SYSTEM                          | <b>26</b> fuzzy rules without chaining (aggregated into 2 disjunctive fuzzy rules) | 1 linear equation  | 56 trees without chaining 2,416 binary rules | 1 chain of 110 trees<br>1,467 binary rules           | 3 hidden layers   42 hidden nodes<br>43 equations |
| TOP      |                                                              | Only a few rules are triggered at a time to compute a prediction                   |                    |                                              | Tree #N corrects the error of the N-1 previous trees | 42 unintelligible synthetic variables             |

|             |                                                                                                                                                                                                                                                                                             | Random <sup>(3)</sup> | XTRACTIS                                           | LoR                                                   | RFo                                                | ВТ                                              | NN                                                   | UC17                                              | INTELLIGIBILITY Score |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|----------------------------------------------------|-------------------------------------------------------|----------------------------------------------------|-------------------------------------------------|------------------------------------------------------|---------------------------------------------------|-----------------------|
| SCORES      | INTELLIGIBILITY Score <sup>(4)</sup>                                                                                                                                                                                                                                                        |                       | 1.22                                               | 0.00                                                  | 0.00                                               | 0.00                                            | 0.00                                                 | 0<br>-2                                           |                       |
| TOP-MODEL S | CVE Real Performance (F <sub>1</sub> -Score) in External Test<br>Gap to CVE Leader in External Test<br>IVE Real Performance (F <sub>1</sub> -Score) in External Test<br>Gap to IVE Leader in External Test<br>Average Real Performance in External Test<br>PERFORMANCE Score <sup>(4)</sup> | 51.72<br>51.72        | 86.79<br>-0.48<br>88.46<br>-2.77<br>87.63<br>-1.63 | 74.07<br>-13.20<br>73.47<br>-17.76<br>73.77<br>-15.48 | 86.21<br>-1.06<br>83.02<br>-8.21<br>84.62<br>-4.64 | 87.27<br>0.00<br>91.23<br>0.00<br>89.25<br>0.00 | 81.63<br>-5.64<br>73.08<br>-18.15<br>77.36<br>-11.90 | -4<br>-6<br>-8<br>-10<br>-12<br>-12<br>-14<br>-16 | RFo A                 |

(1) For all algos: on the same Learning Dataset. All Models are optimized according to their Validation F1-Score.

(2) All top-models are selected according to their Validation Fi-Score while checking that it remains close to their Training Fi-Score. (3) Baseline performances that models must exceed to perform better than chance (P-value = 0.001; 100,000 models generated by random permutation of the output values). The value of each performance criterion is generally achieved by a different random model.

(4) See Appendices for explanations and detailed results. Performance Scores are calculated on all available unknown data.

More Use Cases: xtractis.ai/use-cases/

#### APPENDIX 1 - Calculation of the Intelligibility × Performance Scores

| Al Technique #i | Ti             | $i \in [1; n]$<br>n = number of AI Techniques benchmarked in terms of data-driven modeling = 5 |
|-----------------|----------------|------------------------------------------------------------------------------------------------|
| Benchmark #k    | B <sub>k</sub> | k∈[1 ; p]<br>p = number of Benchmarks for the Use Case $\in$ {1, 2, 3}                         |

Remarks:

- In case of a small number of reference data, a CVE model (College of Virtual Experts) is generated by each explored
  strategy of T<sub>i</sub>, generally via an N×K-fold cross validation. In this case, a Benchmark is led with the top-CVE on the
  External Test Dataset (ETD, composed of unknown reference cases). Then, a top-IVE model (Individual Virtual Expert)
  is generated from the top-CVE, through the XTRACTIS<sup>®</sup> reverse-engineering process, or for the other T<sub>i</sub>, by applying
  the top-strategy, which has generated the top-CVE, on the Training and Validation Datasets. And a second Benchmark
  is led with this top-IVE on the same ETD.
- In case of a huge number of reference data, an IVE is generated by each explored strategy of T<sub>i</sub>, via a 1-split validation. In this case, Benchmarks are led with the top-IVE on the Test Dataset (TD, composed of unknown reference cases) and on the available ETDs.
- Each Benchmark uses the latest versions of the following algorithms available at the date of the benchmark. XTRACTIS<sup>®</sup>: REVEAL; Logistic Regression: Python, Scikit-Learn; Random Forest & Boosted Tree: Python, LightGBM; Neural Network: Python, TensorFlow, Keras.
- Each  $B_k$  uses exactly the same TD and ETD for each  $T_i$  model.
- No Regression models can be obtained by Logistic Regression. So, this Data Analysis technique is benchmarked only for Classification or Scoring problems.
- The Holy Grail for critical Al-based decision systems is to obtain a model with the highest Performance and the highest Intelligibility scores (top-right corner of the graph).

### PERFORMANCE Score

For each  $B_{k}$ , we calculate the values of the Performance Criterion (PC) on the same ETD for all the  $T_i$  top-CVEs; and on the same TD and ETDs for all the  $T_i$  top-IVEs. The PC is: RMSE in percentage for a Regression;  $F_1$ -Score for a Binomial Classification; Average  $F_1$ -Score or Average  $F_2$ -Score for a Multinomial Classification; Gini index for a Scoring. Then, we compare the value of the PC of each  $T_i$  top-CVE (resp. top-IVE) to the best value of this PC reached by the best  $T_i$  top-CVE (resp. top-IVE) on ETD (resp. on TD and ETDs).

For Regression, we calculate for each T<sub>i</sub> top-model (CVE and IVE):  $PS(T_i, B_k) = Best_PC(B_k) - PC(T_i, B_k)$ .

For Classification and Scoring, we calculate for each  $T_i$  top-model:  $PS(T_i, B_k) = PC(T_i, B_k) - Best_PC(B_k)$ .

Performance Score of T<sub>i</sub>

PS(Ti) = Mean (PS(Ti, Bk)) k ∈ [1; p]

#### <u>Remark:</u>

• Each PS varies theoretically from -100 (Lowest Score) to 0 (Highest Score), but practically between -50 and 0.

### **INTELLIGIBILITY Score**

We consider the T<sub>i</sub> top-IVE. Its Intelligibility Score IS(T<sub>i</sub>) is valued from 0.00 to 5.00 regarding the structure of the model: number of predictors, classes, rules, equations, trees, synthetic variables, modalities to predict for classifications (or numeric variables to predict for regressions or scoring). The more compact the model, the higher its IS.

The IS of each  $T_i$  is obtained by accumulating the following five penalty values to the ideal IS value of 5.00 (each penalty has a null or a negative value):

- Penalty 1 (logarithmic penalty regarding the number of predictors): Pen1(T<sub>i</sub>) = min(0, 1 -  $log_{10}$  number of predictors) Examples: Pen1 = 0.00 for up to 10 predictors Pen1 = -3.00 for 10.000 predictors
- Penalty 2 (linear penalty regarding the average number of rules or equations per modality to predict):
   Dep2/(I) = min (0, 0, 0, 1)
   average number of rules or equations per modality to predict)

| $Pen2(T_i) = min$ | (0 001 -  | average number of rules or equations per modality to           |
|-------------------|-----------|----------------------------------------------------------------|
|                   | (0,0.01 - | 100                                                            |
| Examples:         | Pen2 =    | 0.00 for 1 rule or equation per modality to predict on average |

- Pen2 = -3.00 for 301 rules or equations per modality to predict on average
- Penalty 3 (linear penalty regarding the average number of predictors per rule or equation):  $Pen3(T_i) = min \left(0, \frac{9-3 \times average \ number \ of \ predictors \ per \ rule \ or \ equation}{2}\right)$

Examples: Pen3 = 0.00 for up to 3.0 predictors per rule or equation on average Pen3 = -3.00 for 10.0 predictors per rule or equation on average

Penalty 4 (linear penalty regarding the number of chained trees, here for BT only):
 Pen4(T<sub>i</sub>) = min(0, 1 - number of chained trees)

Examples: Pen4 = 0.00 for 1 tree Pen4 = -3.00 for 4 chained trees

Penalty 5 (maximum penalty due to unintelligibility of synthetic variables, here for NN only):  $Pen5(T_i) = -5$ 

Intelligibility Score of T<sub>i</sub>

 $IS(T_i) = max(0.00 , 5.00 + (Pen1+Pen2+Pen3+Pen4+Pen5))$ 

#### <u>Remarks:</u>

- For the difference between the Intelligibility and the Explainability of a model, please see the XTRACTIS® Brochure, page 7.
- The real complexity of the process/phenomenon under study is intrinsic, i.e., it could not be reduced or simplified, but only
  discovered; thus, the top-model will be complex if the process/phenomenon turns out to be complex [Zalila 2017].
  Consequently, for some complex process/phenomenon, IS can be equal to 3.00 or less, even if Ti natively produces intelligible
  models (XTRACTIS, Random Forest).
- For similar structures, the Boosted Tree model is always less intelligible than the Random Forest one, as it is composed of chains of trees, instead of a college of trees (see Penalty 4).
- Neural Network model has always the lowest IS of 0.00, because it uses synthetic unintelligible variables (hidden nodes) in
  addition to all the potential predictors (see Penalty 5).

### APPENDIX 2 – Use Case Results (all Performance criteria of all Top-Models)

| Performance Criterion                                  | Classification Error | Min. Sensitivity<br>Specificity | Sensitivity | Specificity | PPV     | NPV     | F <sub>1</sub> -Score | Refusal    |
|--------------------------------------------------------|----------------------|---------------------------------|-------------|-------------|---------|---------|-----------------------|------------|
| RANDOM MODEL                                           |                      |                                 |             |             |         |         |                       |            |
| Nb of Random Permutations (P-value) = 100,000 (0.001%) |                      |                                 |             |             |         |         |                       |            |
| Performance against chance (External Test)             | 24.56%               | 51.72%                          |             |             |         |         | 51.72%                |            |
| (TRACTIS TOP-MODEL                                     |                      |                                 |             |             |         |         |                       |            |
| CVE - Descriptive Performance (Training)               | 1.09%                | 98.75%                          | 99.39%      | 98.75%      | 96.43%  | 99.79%  | 97.89%                | 0 (0.00%)  |
| CVE - Predictive Performance (Validation)              | 1.25%                | 96.32%                          | 96.32%      | 99.58%      | 98.74%  | 98.75%  | 97.52%                | 2 (0.31%)  |
| CVE - Real Performance (External Test)                 | 6.14%                | 79.31%                          | 79.31%      | 98.82%      | 95.83%  | 93.33%  | 86.79%                | 0 (0.00%)  |
| IVE - Descriptive Performance (Training)               | 1.14%                | 97.66%                          | 97.66%      | 99.27%      | 97.81%  | 99.22%  | 97.73%                | 7 (0.06%)  |
| IVE - Predictive Performance (Validation)              | 1.08%                | 97.37%                          | 97.37%      | 99.45%      | 98.33%  | 99.12%  | 97.84%                | 5 (0.05%)  |
| IVE - Real Performance (Test)                          | 1.42%                | 97.18%                          | 97.18%      | 99.05%      | 97.18%  | 99.05%  | 97.18%                | 12 (0.11%) |
| IVE - Real Performance (642 original points)           | 2.49%                | 95.09%                          | 95.09%      | 98.33%      | 95.09%  | 98.33%  | 95.09%                | 0 (0.00%)  |
| IVE - Real Performance (External Test)                 | 5.45%                | 82.14%                          | 82.14%      | 98.78%      | 95.83%  | 94.19%  | 88.46%                | 4 (3.51%)  |
| OGISTIC REGRESSION TOP-MODEL                           |                      |                                 |             |             |         |         |                       |            |
| CVE - Descriptive Performance (Training)               | 6.39%                | 87.73%                          | 87.73%      | 95.62%      | 87.20%  | 95.82%  | 87.46%                |            |
| CVE - Predictive Performance (Validation)              | 12.31%               | 73.62%                          | 73.62%      | 92.48%      | 76.92%  | 91.15%  | 75.24%                |            |
| CVE - Real Performance (External Test)                 | 12.28%               | 68.97%                          | 68.97%      | 94.12%      | 80.00%  | 89.89%  | 74.07%                |            |
| IVE - Descriptive Performance (Training)               | 6.39%                | 84.66%                          | 84.66%      | 96.66%      | 89.61%  | 94.88%  | 87.07%                |            |
| IVE - Real Performance (External Test)                 | 11.40%               | 62.07%                          | 62.07%      | 97.65%      | 90.00%  | 88.30%  | 73.47%                |            |
| RANDOM FOREST TOP-MODEL                                |                      |                                 |             |             |         |         |                       |            |
| CVE - Descriptive Performance (Training)               | 0.00%                | 100.00%                         | 100.00%     | 100.00%     | 100.00% | 100.00% | 100.00%               |            |
| CVE - Predictive Performance (Validation)              | 5.45%                | 86.50%                          | 86.50%      | 97.29%      | 91.56%  | 95.49%  | 88.96%                |            |
| CVE - Real Performance (External Test)                 | 7.02%                | 86.21%                          | 86.21%      | 95.29%      | 86.21%  | 95.29%  | 86.21%                |            |
| IVE - Descriptive Performance (Training)               | 0.00%                | 100.00%                         | 100.00%     | 100.00%     | 100.00% | 100.00% | 100.00%               |            |
| IVE - Real Performance (External Test)                 | 7.89%                | 75.86%                          | 75.86%      | 97.65%      | 91.67%  | 92.22%  | 83.02%                |            |
| BOOSTED TREE TOP-MODEL                                 |                      |                                 |             |             |         |         |                       |            |
| CVE - Descriptive Performance (Training)               | 0.00%                | 100.00%                         | 100.00%     | 100.00%     | 100.00% | 100.00% | 100.00%               |            |
| CVE - Predictive Performance (Validation)              | 4.67%                | 88.34%                          | 88.34%      | 97.70%      | 92.90%  | 96.10%  | 90.57%                |            |
| CVE - Real Performance (External Test)                 | 6.14%                | 82.76%                          | 82.76%      | 97.65%      | 92.31%  | 94.32%  | 87.27%                |            |
| IVE - Descriptive Performance (Training)               | 0.00%                | 100.00%                         | 100.00%     | 100.00%     | 100.00% | 100.00% | 100.00%               |            |
| IVE - Real Performance (External Test)                 | 4.39%                | 89.66%                          | 89.66%      | 97.65%      | 92.86%  | 96.51%  | 91.23%                |            |
| IEURAL NETWORK TOP-MODEL                               |                      |                                 |             |             |         |         |                       |            |
| CVE - Descriptive Performance (Training)               | 0.00%                | 100.00%                         | 100.00%     | 100.00%     | 100.00% | 100.00% | 100.00%               |            |
| CVE - Predictive Performance (Validation)              | 4.67%                | 87.73%                          | 87.73%      | 97.91%      | 93.46%  | 95.91%  | 90.51%                |            |
| CVE - Real Performance (External Test)                 | 7.89%                | 68.97%                          | 68.97%      | 100.00%     | 100.00% | 90.43%  | 81.63%                |            |
| IVE - Descriptive Performance (Training)               | 0.00%                | 100.00%                         | 100.00%     | 100.00%     | 100.00% | 100.00% | 100.00%               |            |
| IVE - Real Performance (External Test)                 | 12.28%               | 65.52%                          | 65.52%      | 95.29%      | 82.61%  | 89.01%  | 73.08%                |            |

The entirety of this document is protected by copyright. All rights are reserved, particularly the rights of reproduction and distribution. Quotations from any part of the document must necessarily include the following reference: Zalila, Z., Intellitech & Xtractis (2023-2024). XTRACTIS® the Reasoning AI for Trusted Decisions. Use Case #17 | Precision Medicine: Voice-based Detection of Parkinson Disease – Benchmark vs. Logistic Regression, Random Forest, Boosted Tree & Neural Network. INTELLITECH [intelligent technologies], March 2024, v2.0, Compiegne, France, 6p.