

Civil Engineering

PREDICTION OF THE COMPRESSIVE STRENGTH OF CONCRETE

Benchmark vs. Random Forest, Boosted Tree & Neural Network

UC#15 - 2024/03 (v2.0)

xtractis.ai

PROBLEM DEFINITION

GOAL	performance concr	em that accurately and rationally models the compressive strength of high- rete from its age, formulation, and some of its manufacturing characteristics, mplexity of the phenomenon.
PROS & BENEFITS		xperts and civil engineers to understand the causal relationships between concrete I its compressive strength.
		fluential parameters to anticipate the compressive strength of the concrete and formulations or optimize its production.
	 Create new cus 	tom-designed concretes for specific uses.
REFERENCE DATA	Variable to Predict:	The model predicts the Compressive Strength which is a continuous variable in the range [2.3; 81.8] MPa.
Source: Prof. I-Cheng Yeh, Department of Information Management, Chung- Hua University, Hsin Chu, Taiwan	Potential Predictors:	8 parameters characterizing each concrete trial batch:
Dataset Dua, D. and Graff, C. (2019). UCI Machine Learning Repository		Age, Cement, Blast Furnace Slag, Fly Ash, Water, Superplasticizer, Coarse Aggregate, Fine Aggregate.
[http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and	Observations:	1,030 reference points, each is associated with a value of compressive strength.
Computer Science		 Data is divided into: a Learning Dataset for model induction using Training and Validation Datasets, Learning Dataset: 875 cases 84.95% (80% for Training, 20% for Validation) and an External Test Dataset to check the top model's performance on real data and for benchmarking: 155 cases 15.05%
MODEL TYPE	Regression	Multinomial Classification Binomial Classification Scoring

XTRACTIS-INDUCED DECISION SYSTEM

☑ Intelligible Model, Explainable Decisions	 The top-model is a decision system composed of 86 gradual rules without chaining. Each rule uses from 3 to 8 predictors among the 8 predictors that XTRACTIS identified as all significant.
	The model is quite intelligible despite the large number of rules, given the high complexity of the studied problem.
	 Only a few rules are triggered at a time to compute the decision.
High Predictive Capacity	It has a good Real Performance (on unknown data).
☑ Ready to Deploy	It computes real-time predictions up to 70,000 decisions/second, offline or online (API).

STEPS		()→	₽	Jarda l	•••• ===	Compressive Strength
	Reference Data	INDUCTION	XTRACTIS Top-Model	New Cases	DEDUCTION	Automated Decision (predict the value of Compressive Strength)
SOFTWARE ROBOTS	XTRACTIS[®] REVEAL Delivers the decision system + its Structure & Performance Repo			XTRACTIS [®] PREDICT Delivers the decision + the Prediction Report explaining its reaso		

TOP-MODEL INDUCTION

XTRACTIS PROCESS

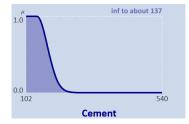
INDUCTION Parameters	1.	We launch 1,000 inductive reasoning strategies; each strategy is applied to 40 different 5-fold-partitions of the Learning Dataset to get a reliable assessment of the descriptive and predictive performances, respectively from Training and Validation Datasets.					
Powered by: 2. Each strategy thus generates 200 unitary models called Individual Virtual Expert (IVE), where aggregated with 3 possible operators into a College of Virtual Experts (CVE).					t (IVE), whose decisions are		
REVEAL v12.2.44127	3.	Among the 3,000 indu 6,719 rules share 8 pred	•	with the best predictive perfo	ormance remains complex:		
	pro	Given the small number of reference cases in the reference dataset, the XTRACTIS CVE→IVE Reverse-Engineering process is necessary to get a more intelligible model: 4. We build a synthetic dataset composed of 43,750 new cases simulated by deduction from the top-CVE,					
	5. 6.	this new dataset: XTRACTIS induces 2,000 IVEs.					
	0.	Total number of induced unitary models 202,000 IVEs	Criterion for the induction optimization RMSE	Validation criterion for the top-models selection RMSE	Duration of the process (Induction Power FP64) 12 days (1 Tflops)		

TOP-MODEL STRUCTURE

The top-model has an acceptable intelligibility as it has 86 rules aggregated into 30 disjunctive rules and combining the 12 predictors with 6.7 predictors per rule on average. But it remains intelligible as its Structure Report reveals all the internal logic of the decision system and ensures that the model is understandable by the human expert. It is a transparent model that can be audited and certified before deployment to end-users.

PREDICTORS

- 8 parameters out of 8
- Ranked by individual contribution (2 strong signals, 2 medium signal, 4 weak signals):
 #1 Age /#2 Cement /#3 ...
- Labeled by fuzzy classes Example: fuzzy interval "inferior to about 137"



RULES

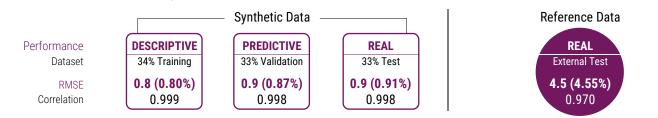
- 86 conjunctive fuzzy rules without chaining (aggregated into 30 disjunctive fuzzy rules)
- 3 to 8 predictors per rule (on average, 6.7 predictors per rule)
- Example: **fuzzy rule R3** uses 4 predictors and concludes {8.1}. 85 other fuzzy rules complete this model.

AND	Cement (kg/m ³) Blast furnace slags (kg/m ³) Water (kg/m ³) Age (d)	IS inferior to about 137 IS inferior to about 8.05 IS superior to about 189.81 IS inferior to about 15
	Compressive Strength	IS 8.1

Literally, the Compressive Strength of the concrete has a value of 8.1 if the density of cement is under around 137 kg/m³, and if the density of Blast furnace slags is under about 8.05 kg/m³ and the quantity of water is above about 189.81 kg/m³ and the age of the concrete is inferior to about 15 days.

TOP-MODEL PERFORMANCE

The top-IVE performances, measured in Training/Validation/Test on synthetic data, then in External Test on reference data, guarantee the model's predictive and real performances.



XTRACTIS for Civil Engineering: Prediction of the Compressive Strength of Concrete – March 2024 © Z. ZALILA & INTELLITECH [intelligent technologies]. 2002-2024. All Rights Reserved.

v12.2.44127

EXPLAINED PREDICTIONS FOR 2 UNKNOWN CASES

Powered by: XTRACTIS® PREDICT

CASE (from the External Dataset, i.e., not included in the Learning Dataset)

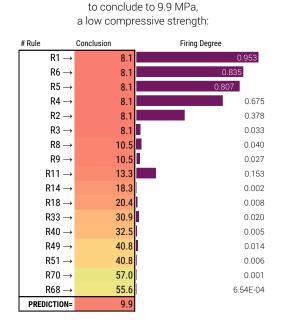
DEDUCTIVE INFERENCE OF RULES

For this concrete, 17 rules are triggered

AUTOMATED DECISION

NUMBER OF TRIGGERED RULES

CONCRETE #6	52	+
actual value = 4.9 Low Compressive St		Rea
Cement	184	Tim
Blast furnace slags	122.6	
Fly ashes*	0.00	
Water	203.5	
Superplasticizers*	0.0	
Coarse aggregates	959.2	
Fine aggregates	800	
Age	3	J



17 / 86					
FUZZY PR	REDICTION				
{ 8.1	0.953,				
13.3	0.153,				
10.5	0.04,				
	0.02,				
	0.014,				
	0.008,				
	0.005,				
18.3	0.002,				
	0.001,				
55.6	6.54E-04 }				
FINAL PREDICTION					
{ 9	.9}				
The system delivers a correct					

prediction compared to that given by laboratory measurements:

NUMBER OF TRIGGERED RULES

7/86

CONCRETE #1	82			
actual value = 82.6 MPa High Compressive Strength				
Cement	390			
Blast furnace slags	189			
Fly ashes*	0.0			
Water	145.9			
Superplasticizers	22			
Coarse aggregates	944.7			
Fine aggregates	755.8			
Age	91			

For this concrete, 7 rules are triggered to conclude to 72.7 MPa, a high compressive strength:

# Rule		Conclusion	Firing Degree
# Rule			
	$R60 \rightarrow$	49.9	5.82E-04
	$R72 \rightarrow$	58.8	0.011
	$R73 \rightarrow$	64.2	0.025
	$R78 \rightarrow$	70.6	0.159
	$R81 \rightarrow$	71.9	0.275
	$\rm R83 \rightarrow$	73.8	0.335
	$\rm R85 \rightarrow$	73.8	0.818
PRE	DICTION=	72.7	·

REDICTION				
0.818,				
0.275,				
0.159,				
0.025,				
0.011,				
5.82E-04 }				
FINAL PREDICTION				
{72.7}				

The system delivers a correct prediction compared to that given by laboratory measurements:

*Predictor value is out of the variation Range of the model (<0.50 % 00R for case #652 and case #182) but inside the allowed extrapolation range. Xtractis will refuse to give a result for an extrapolation far from the allowed extrapolation range. It is one situation of the "Refusal" prediction.

Real

TOP-MODELS BENCHMARK: DECISION STRUCTURE & INTELLIGIBILITY × PERFORMANCE SCORES

		XTRACTIS 🔣	RANDOM FOREST	BOOSTED TREE	NEURAL NETWORK
ŝ	MODELS RELEASE	2023/01	2023/01	2023/01	2023/03
TERS	ALGORITHM VERSION	XTRACTIS REVEAL 12.2.44127	Python 3.9 LightGBM 3.3.2	Python 3.9 LightGBM 3.3.2	Python 3.9 TensorFlow 2.10.0 Keras 2.10.0
MODELING PARAME	CROSS-VALIDATION Technique	40×5 folds for each CVE model. Then 1-Split Validation for each IVE model: 34% Training 33% Validation 33% Test	40×5 folds for each CVE model	40×5 folds for each CVE model	40×5 folds for each CVE model
	NUMBER OF EXPLORED STRATEGIES ⁽¹⁾	1,000 induction strategies for the CVE on Training / Validation data. 2,000 induction strategies for the IVE on synthetic data	1,000 ML strategies on Training / Validation data	1,000 ML strategies on Training / Validation data	1,000 ML strategies on Training / Validation data
MOD	TOP-MODEL SELECTION ⁽²⁾	Top-CVE among 3,000 CVEs. Then Top-IVE among 2,000 IVEs	Top-CVE selected among 1,000 CVEs, then single model obtained by applying best CVE strategy on 100% of the Learning Datas		

TURE	NUMBER OF PREDICTORS (out of 8 Potential Predictors)	8	8	8	8
EL STRUC	AVERAGE NUMBER OF PREDICTORS PER RULE / EQUATION	6.7 per rule	5.5 per rule	4.5 per rule	12.1 per equation
-MOD	STRUCTURE OF THE DECISION SYSTEM	86 fuzzy rules without chaining (aggregated into 30 disjunctive fuzzy rules)	172 trees without chaining 76,196 binary rules	1 chain of 337 trees 10,719 binary rules	2 hidden layers 32 hidden nodes 33 equations
TOP		Only a few rules are triggered at a time to compute a decision		Tree #N corrects the error of the N-1 previous trees	32 unintelligible synthetic variables

<u>ي</u>		Random ⁽³⁾	XTRACTIS	RFo	BT	NN	UC15	0	INTELLIGIBILITY	Score 3	4	5
SCORES	INTELLIGIBILITY Score ⁽⁴⁾		2.56	0.00	0.00	0.00	<u>و</u>	BT				()
EL S	CVE Real Perf. (RMSE_%) in External Test	22.19	4.05	4.36	3.26	5.17	ESco	RFo	XTRACTIS			
DE	Gap to CVE Leader in External Test		-0.79	-1.10	0.00	-1.91	ANC					
MODEL	IVE Real Perf. (RMSE_%) in External Test	21.19	4.55	4.47	3.18	5.60	-2 -2	NN 🔵				
4	Gap to IVE Leader in External Test		-1.35	-1.29	0.00	-2.42	ERFC					
10	Average Real Performance in External Test	21.69	4.30	4.42	3.22	5.39	B					
	PERFORMANCE Score ⁽⁴⁾		-1.08	-1.20	0.00	-2.17	-4					

(1) For all algos: on the same Learning Dataset. All Models are optimized according to their Validation RMSE.

(2) All top-models are selected according to their Validation RMSE while checking that it remains close to their Training RMSE.

(3) Baseline performances that models must exceed to perform better than chance (P-value = 0.001; 100,000 models generated by random permutation of the output values). The value of each performance criterion is generally achieved by a different random model.

(4) See Appendices for explanations and detailed results. Performance Scores are calculated on all available unknown data.

More Use Cases: xtractis.ai/use-cases/

APPENDIX 1 - Calculation of the Intelligibility × Performance Scores

Al Technique #i	Ti	$i \in [1; n]$ n = number of AI Techniques benchmarked in terms of data-driven modeling = 5
Benchmark #k	B _k	$k \in [1; p]$ p = number of Benchmarks for the Use Case $\in \{1, 2, 3\}$

Remarks:

- In case of a small number of reference data, a CVE model (College of Virtual Experts) is generated by each explored
 strategy of T_i, generally via an N×K-fold cross validation. In this case, a Benchmark is led with the top-CVE on the
 External Test Dataset (ETD, composed of unknown reference cases). Then, a top-IVE model (Individual Virtual Expert)
 is generated from the top-CVE, through the XTRACTIS[®] reverse-engineering process, or for the other T_i, by applying
 the top-strategy, which has generated the top-CVE, on the Training and Validation Datasets. And a second Benchmark
 is led with this top-IVE on the same ETD.
- In case of a huge number of reference data, an IVE is generated by each explored strategy of T_i, via a 1-split validation. In this case, Benchmarks are led with the top-IVE on the Test Dataset (TD, composed of unknown reference cases) and on the available ETDs.
- Each Benchmark uses the latest versions of the following algorithms available at the date of the benchmark. XTRACTIS[®]: REVEAL; Logistic Regression: Python, Scikit-Learn; Random Forest & Boosted Tree: Python, LightGBM; Neural Network: Python, TensorFlow, Keras.
- Each B_k uses exactly the same TD and ETD for each T_i model.
- No Regression models can be obtained by Logistic Regression. So, this Data Analysis technique is benchmarked only for Classification or Scoring problems.
- The Holy Grail for critical Al-based decision systems is to obtain a model with the highest Performance and the highest Intelligibility scores (top-right corner of the graph).

PERFORMANCE Score

For each B_{k} , we calculate the values of the Performance Criterion (PC) on the same ETD for all the T_i top-CVEs; and on the same TD and ETDs for all the T_i top-IVEs. The PC is: RMSE in percentage for a Regression; F_1 -Score for a Binomial Classification; Average F_1 -Score or Average F_2 -Score for a Multinomial Classification; Gini index for a Scoring. Then, we compare the value of the PC of each T_i top-CVE (resp. top-IVE) to the best value of this PC reached by the best T_i top-CVE (resp. top-IVE) on ETD (resp. on TD and ETDs).

For Regression, we calculate for each T_i top-model (CVE and IVE): $PS(T_i, B_k) = Best_PC(B_k) - PC(T_i, B_k)$.

For Classification and Scoring, we calculate for each T_i top-model: $PS(T_i, B_k) = PC(T_i, B_k) - Best_PC(B_k)$.

Performance Score of Ti

 $PS(T_i) = Mean (PS(T_i, B_k))_{k \in [1; p]}$

<u>Remark:</u>

• Each PS varies theoretically from -100 (Lowest Score) to 0 (Highest Score), but practically between -50 and 0.

INTELLIGIBILITY Score

We consider the T_i top-IVE. Its Intelligibility Score IS(T_i) is valued from 0.00 to 5.00 regarding the structure of the model: number of predictors, classes, rules, equations, trees, synthetic variables, modalities to predict for classifications (or numeric variables to predict for regressions or scoring). The more compact the model, the higher its IS.

The IS of each T_i is obtained by accumulating the following five penalty values to the ideal IS value of 5.00 (each penalty has a null or a negative value):

- Penalty 1 (logarithmic penalty regarding the number of predictors): Pen1(T_i) = min(0, 1 - log_{10} number of predictors) Examples: Pen1 = 0.00 for up to 10 predictors Pen1 = -3.00 for 10.000 predictors
- Penalty 2 (linear penalty regarding the average number of rules or equations per modality to predict):
 Dep2/(I) = min (0, 0, 0, 1)
 average number of rules or equations per modality to predict)

$Pen2(T_i) = min$	0 0 0 1 -	average number of rules or equations per modality to				
	(0,0.01 -	100				
Examples:	Pen2 =	0.00 for 1 rule or equation per modality to predict on average				

- Pen2 = -3.00 for 301 rules or equations per modality to predict on average
- Penalty 3 (linear penalty regarding the average number of predictors per rule or equation): $Pen3(T_i) = min \left(0, \frac{9-3 \times average \ number \ of \ predictors \ per \ rule \ or \ equation}{2}\right)$
 - Examples: Pen3 = 0.00 for up to 3.0 predictors per rule or equation on average Pen3 = -3.00 for 10.0 predictors per rule or equation on average
- Penalty 4 (linear penalty regarding the number of chained trees, here for BT only):
 Pen4(T_i) = min(0, 1 number of chained trees)

Examples: Pen4 = 0.00 for 1 tree Pen4 = -3.00 for 4 chained trees

Penalty 5 (maximum penalty due to unintelligibility of synthetic variables, here for NN only): $Pen5(T_i) = -5$

Intelligibility Score of T_i

 $IS(T_i) = max(0.00 , 5.00 + (Pen1+Pen2+Pen3+Pen4+Pen5))$

<u>Remarks:</u>

- For the difference between the Intelligibility and the Explainability of a model, please see the XTRACTIS® Brochure, page 7.
- The real complexity of the process/phenomenon under study is intrinsic, i.e., it could not be reduced or simplified, but only
 discovered; thus, the top-model will be complex if the process/phenomenon turns out to be complex [Zalila 2017].
 Consequently, for some complex process/phenomenon, IS can be equal to 3.00 or less, even if Ti natively produces intelligible
 models (XTRACTIS, Random Forest).
- For similar structures, the Boosted Tree model is always less intelligible than the Random Forest one, as it is composed of chains of trees, instead of a college of trees (see Penalty 4).
- Neural Network model has always the lowest IS of 0.00, because it uses synthetic unintelligible variables (hidden nodes) in
 addition to all the potential predictors (see Penalty 5).

APPENDIX 2 – Use Case Results (all Performance criteria of all Top-Models)

Performance Criterion	Correlation	MAE	RMSE	Refusal
RANDOM MODEL				
Number of Random Permutations (P-value) = 100,000 (0.001%)				
Performance against chance (External Test)	0.074	160.0 (23.18%)	200.0 (28.67%)	
XTRACTIS TOP-MODEL				
CVE Descriptive Performance (Training)	0.983	2.4 (2.37%)	3.2 (3.19%)	0 (0.00%)
CVE Predictive Performance (Validation)	0.980	2.5 (2.52%)	3.4 (3.44%)	0 (0.00%)
CVE Real Performance (External Test)	0.976	3.2 (3.20%)	4.0 (4.05%)	0 (0.00%)
IVE Real Performance (875 Original Points)	0.972	3.1 (3.06%)	4.0 (4.03%)	0 (0.00%)
IVE Real Performance (External Test)	0.970	3.6 (3.59%)	4.5 (4.55%)	0 (0.00%)
RANDOM FOREST TOP-MODEL	0.005		4.7 (4.600)	
CVE Descriptive Performance (Training)	0.995	1.1 (1.07%)	1.7 (1.69%)	
CVE Predictive Performance (Validation)	0.953	3.5 (3.52%)	5.1 (5.07%)	
CVE Real Performance (External Test)	0.970	3.2 (3.21%)	4.4 (4.36%)	
IVE Descriptive Performance (Training)	0.993	1.2 (1.17%)	2.0 (1.99%)	
IVE Real Performance (External Test)	0.967	3.0 (3.04%)	4.5 (4.47%)	
BOOSTED TREES TOP-MODEL				
CVE Descriptive Performance (Training)	0.995	0.9 (0.88%)	1.5 (1.53%)	
CVE Predictive Performance (Validation)	0.970	2.6 (2.65%)	4.1 (4.05%)	
CVE Real Performance (External Test)	0.983	2.3 (2.33%)	3.3 (3.26%)	
IVE Descriptive Performance (Training)	0.996	0.9 (0.86%)	1.6 (1.57%)	
IVE Real Performance (External Test)	0.984	2.2 (2.17%)	3.2 (3.18%)	
NEURAL NETWORK TOP-MODEL	0.000			
CVE Descriptive Performance (Training)	0.963	3.5 (3.48%)	<u>4.6 (4.59%)</u> <u>5.1 (5.15%)</u>	
CVE Predictive Performance (Validation)	0.952	3.8 (3.84%)	5.1 (5.15%)	
CVE Real Performance (External Test)	0.959	4.0 (4.05%)	5.2 (5.17%)	
IVE Descriptive Performance (Training)	0.952	3.9 (3.94%)	5.1 (5.10%)	
IVE Real Performance (External Test)	0.949	4.4 (4.37%)	5.6 (5.60%)	

The entirety of this document is protected by copyright. All rights are reserved, particularly the rights of reproduction and distribution. Quotations from any part of the document must necessarily include the following reference: Zalila, Z., Intellitech & Xtractis (2015-2024). XTRACTIS® the Reasoning AI for Trusted Decisions. Use Case #15 | Civil Engineering: Prediction of the Compressive Strength of Concrete – Benchmark vs. Random Forest, Boosted Tree & Neural Network. INTELLITECH [intelligent technologies], March 2024, v2.0, Compiegne, France, 6p.