

PROBLEM DEFINITION

Precision Medicine

CARDIOTOCOGRAPHIC IDENTIFICATION OF FETAL HEART CONDITIONS

Benchmark vs. Logistic Regression, Random Forest, Boosted Tree & Neural Network

UC#03 - 2024/03 (v3.0)

xtractis.ai

GOAL	Design an AI-based decision system that accurately and instantly makes a rational medical diagnosis of fetal heart condition from signal characteristics of fetal heart rate and uterine contractions.			
PROS & BENEFITS	cardiologists ur	eters requiring increased vigilance and improve medical knowledge by helping inderstand the causal relationships between specific cardiotocographic features, on, and the presence of an abnormality.		
		p the medical profession to make earlier and more personalized decisions by means of rapid, tematic, and explainable diagnoses. Extend access to high-level diagnoses even in medical erts.		
	Decrease prena	tal mortality and avoid possible neurological sequelae for the fetus.		
REFERENCE DATA Source: Dr. D. AYRES-DE-CAMPOS & J. BERNARDES – Faculty of Medicine, University of Porto Dataset: Dua, D. and Graff, C. (2019).	Variable to Predict: Potential Predictors:	 Fetal heart behavior diagnosis among 10 conditions [CS=Calm Sleep; REMS=Rapid Eye Movement Sleep; CV = Calm Vigilance; AV = Active Vigilance; SH = Shift Pattern (CS or Suspect with Shifts); AD = Accelerative/Decelerative Pattern (Stress Situation); DE = Decelerative Pattern (Vagal Stimulation); LD = Largely Decelerative Pattern; FS = Flat-Sinusoidal Pattern (Pathological State); SUSP = Suspect Pattern]. 21 parameters characterizing the fetal cardiotocograms and uterine contraction signals (Number of Uterine Contractions per Second, Fetal Heart Rate Baseline). 		
UCI Machine Learning Repository http://archive.ics.uci.edu/ml. Irvine, CA: University of California, School of Information and Computer Science	Observations:	2,126 cardiotocographic signals related to different fetal cardiac conditions. Data are divided into a Learning Dataset for model induction using Training and		
computer science		Validation Datasets, and an External Test Dataset to check the top model's performance on real data and for benchmarking.		
	80% for Tr CS REMS CV AV	taset: 1,807 cases 85% 'aining, 20% for Validation SH AD LD DE FS SUSP 3.38% 15.61% 11.84% 5.03% 3.27% 9.24% External Test Dataset: 319 cases 15% CS REMS CV AV SH AD LD DE FS SUSP 18.18% 26.96% 2.51% 3.76% 3.45% 5.67% 11.91% 5.02% 3.14% 9.40%		

XTRACTIS-INDUCED DECISION SYSTEM

MODEL TYPE

☑ Intelligible Model, Explainable Decisions	 The top-model is a decision system composed of 56 gradual rules without chaining, aggregated into 10 disjunctive rules. Each rule uses from 2 to 8 predictors among the 18 variables that XTRACTIS automatically identified as significant (out of the 21 potential predictors). Only a few rules are triggered at a time to compute the decision.
High Predictive Capacity	It has a good Real Performance (on unknown data).
Ready to Deploy	It computes real-time predictions up to 70,000 decisions/second, offline or online (API).

Multinomial Classification

Binomial Classification

Scoring

XTRACTIS for Precision Medicine: Cardiotocographic Identification of Fetal Heart Conditions – March 2024 © Z. ZALILA & INTELLITECH [intelligent technologies]. 2002-2024. All Rights Reserved.

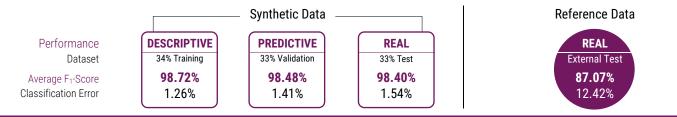
Regression

STEPS		()→	₽	*		CALM SLEEP	/ /	SUSPECT PATTERN
	Reference Data	INDUCTION	XTRACTIS Top-Model	New Cases	DEDUCTION		nated Deci etal heart co	
SOFTWARE ROBOTS	XTRACTIS [®] REVEAL Delivers the decision system + its Structure & Performance Reports		Delivers		RACTIS [®] PRED		its reasoning	

TOP-MODEL INDUCTION

XTRACTIS PROCESS

INDUCTION PARAMETERS	 We launch 1,000 inductive reasoning strategies; each strategy is applied to 20 different 5-fold-partitions of the Learning Dataset to get a reliable assessment of the descriptive and predictive performances, respectively from Training and Validation Datasets. 						
Powered by:	XTRACTIS" 3 Among the 3,000 induced CVEs the top-CVE with the best predictive performance remains						
v12.1.41978		ference cases in the refere	nce dataset, the XTRACTIS C \	∕E→IVE Reverse-Engineering			
	-	5	ew cases simulated by deduct em.	ion from the top-CVE, around			
		5. We apply 2,000 induction strategies to the same single 34% Training 33% Validation 33% Test partition of this new dataset: XTRACTIS induces 2,000 IVEs.					
	6. The top-IVE selected is the one that is the most intelligible while being as efficient as the top-CVE.						
	Total number of induced unitary models	Criterion for the induction optimization	Validation criterion for the top-model selection	Duration of the process (Induction Power FP64)			
	102,000 IVEs	Average F ₁ -Score	Average F ₁ -Score	9.5 days (1 Tflops)			
TOP-MODEL STRUCTURE	18 predictors into 56 rules v logic of the decision system	vith 4.2 predictors per rule m and ensures that the	en the complexity of the ph on average. Its Structure Re model is understandable by fore deployment to end-users	eport reveals all the internal the human expert. It is a			
	PREDICTORS	RI	RULES				
	 18 signal characteristics out of 21 17 continuous variables + 1 nominal variable Ranked by individual contribution (3 strong signals, 7 medium & 8 weak): #1 Histogram Median / #2 Number of acc. per sec 		56 connective fuzzy rules witho (aggregated into 10 disjunctive 2 to 8 predictors per rule (on average Example: fuzzy rule R17 uses 3 [fuzzy rules) ge, 4.2 predictors per rule) predictors and concludes "CALM			
	 Labeled by binary and fuz. Examples: binary interval fuzzy interval 	"inferior to 22.8"	VIGILANCE". 55 other fuzzy rules F Number of accelerations per second (frequency) NUD Percentage of time with	IS about [0.0021 ; 0.0030]			


μ about [1.4; 2.3] μ inf to 22.8

IF	Number of accelerations per second (frequency)	IS	about [0.0021 ; 0.0030]
AND	Percentage of time with abnormal short-term variability	IS	inferior to 22.8
AND	Number of histogram peaks	IS	about [1.4 ; 2.3]
THEN	Fetal Heart Condition	IS	CALM VIGILANCE

Literally, the Heart Condition if the fetus gets a Calm Vigilance diagnosis if the Number of accelerations per second is about between 0.0021 and 0.0030 accelerations per second, and the Percentage of time with abnormal short-term variability is under around 22.8% and the Number of histogram peaks is between around 1.4 peaks and around 2.3 peaks.

TOP-MODEL PERFORMANCE

The top-IVE performances, measured in Training/Validation/Test on synthetic data, then in External Test on reference data, guarantee the model's predictive and real performances.

XTRACTIS for Precision Medicine: Cardiotocographic Identification of Fetal Heart Conditions – March 2024 © Z. ZALILA & INTELLITECH [intelligent technologies]. 2002-2024. All Rights Reserved. 141.0

0.00800

0.024000

0.0016

0.00160

50.0

0.90

1.0

4.300

114

58

172

7.0

148

147

151

7 Right

Asymmetric

EXPLAINED PREDICTIONS FOR 4 UNKNOWN CASES

•••)

 $(\bar{\mathbf{0}})$

Real Time

XTRACTIS[®] PREDICT Powered by

version 12.1.41978

CASE (from the External Dataset, i.e., not included in the Learning Dataset)

PATIENT #CTG0381

actual value = REMS

Fetal Heart Rate Baseline

second

per second Number of Uterine

variability

variability

variability

Variability

Number of light

Number of accelerations per

Number of fetal movements

contractions per second

decelerations per second

Percentage of time with

Mean value of short term

Percentage of time with

Mean Value of Long Term

Width of FHR Histogram

Minimum of FHR Histogram

Maximum of FHR histogram

Number of Histogram Peaks

Histogram Mode

Histogram Mean

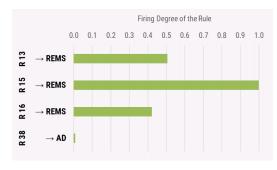
Histogram Median

Histogram Variance

Histogram Tendency

abnormal long term

abnormal short term


DEDUCTIVE	INFERENCE	OF RULES

For this patient, 4 rules are triggered:

R15 at 1.000, R13 at 0.505, and R16 at 0.422 to conclude "Rapid Eye Movement Sleep".

R38 is fired at 0.008 to conclude "Accelerative / Decelerative Pattern".

The other 52 rules are not activated.

AUTOMATED DECISION

NUMBER OF TRIGGERED RULES 4 / 56

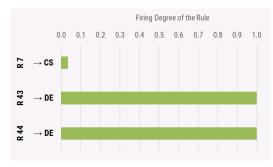
> FUZZY PREDICTION { REMS | 1.000, AD | 0.008 }

FINAL PREDICTION { REMS }

The system delivers a correct diagnosis of the heart condition compared to that given by the cardiologist:

RAPID EYE MOVEMENT SLEEP

PATIENT #CTG1926


actual value = DI		ش ا
Fetal Heart Rate Baseline	140.0	Real
Number of accelerations per second	0.00092	Time
Number of fetal movements per second	0.001845	
Number of Uterine contractions per second	0.0055	
Number of light decelerations per second	0.00554	
Percentage of time with abnormal short term variability	63.0	
Mean value of short term variability	1.50	
Percentage of time with abnormal long term variability	1.0	
Mean value of long term variability	9.500	
Width of FHR Histogram	163	
Minimum of FHR Histogram	65	
Maximum of FHR histogram	228	
Number of Histogram Peaks	5.0	
Histogram Mode	142	
Histogram Mean	118	
Histogram Median	141	
Histogram Variance	27	
Histogram Tendency	Symmetric)

For this patient, 3 rules are triggered:

B43 and **B44** at 1.000 to conclude "Decelerative Pattern".

> **R7** is fired at 0.034 to conclude "Calm Sleep".

The other 53 rules are not activated.

NUMBER OF TRIGGERED RULES 3 / 56

> FUZZY PREDICTION { DE | 1.000, CS | 0.034 }

FINAL PREDICTION { DE }

The system delivers a correct diagnosis of the heart condition compared to that given by the cardiologist:

DECELERATIVE PATTERN

Real

Time

CASE

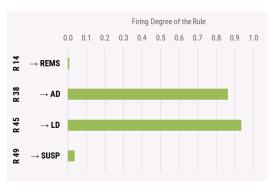
(from the External Dataset, i.e., not included in the Learning Dataset)

PATIENT #CTG1754

PATIENT #CTG1754				
actual value = LI) ḿ		
Fetal Heart Rate Baseline	134.0	Real		
Number of accelerations per second	0.00421	Time		
Number of fetal movements per second	0.001404			
Number of Uterine contractions per second	0.0014			
Number of light decelerations per second	0.00421			
Percentage of time with abnormal short term variability	60.0			
Mean value of short term variability	1.60			
Percentage of time with abnormal long term variability*	0.0			
Mean value of long term variability*	0.000			
Width of FHR Histogram	113			
Minimum of FHR Histogram	71			
Maximum of FHR histogram	184			
Number of Histogram Peaks	7.0			
Histogram Mode	89			
Histogram Mean	118			
Histogram Median	113			
Histogram Variance	195			
Histogram Tendency	Left Asymmetric)		

DEDUCTIVE INFERENCE OF RULES

For this patient, 4 rules are triggered:


R45 is fired at 0.935 to conclude "Largely Decelerative Pattern".

R38 is fired at 0.864 to conclude "Accelerative/Decelerative Pattern".

> R49 is fired at 0.036 to conclude "Suspect Pattern".

R14 is fired at 0.008 to conclude "Rapid Eye Movement Sleep".

The other 52 rules are not activated.

DECISION

NUMBER OF TRIGGERED RULES

4 / 56			
FUZZY PRE	DICTION		
{ LD	0.935,		
AD	0.864,		
SUSP	0.036,		
REMS	0.008 }		

FINAL PREDICTION { LD }

The system delivers a correct diagnosis of the heart condition compared to that given by the cardiologist:

LARGELY DECELERATIVE PATTERN

PATIENT #CTG0450

FATILIT #CTOO	100
actual value = C	S
Fetal Heart Rate Baseline	135.0
Number of accelerations per second	0.00123
Number of fetal movements per second	0.002466
Number of Uterine contractions per second*	0.0000
Number of light decelerations per second*	0.00000
Percentage of time with abnormal short term variability	58.0
Mean value of short term variability	0.60
Percentage of time with abnormal long term variability	15.0
Mean value of long term variability	8.000
Width of FHR Histogram	95
Minimum of FHR Histogram	70
Maximum of FHR histogram	165
Number of Histogram Peaks	5.0
Histogram Mode	139
Histogram Mean	140
Histogram Median	141
Histogram Variance	2
Histogram Tendency	Right Asymmetric


For this patient, 4 rules are triggered:

R9 and R11 at 1.000 to conclude "Calm Sleep".

R37 is fired at 1.000 to conclude "Shift Pattern: Calm Sleep or Suspect With Shifts".

R13 is fired at 0.002 to conclude "Rapid Eye Movement Sleep".

The other 52 rules are not activated.

NUMBER OF TRIGGERED RULES 4/56

FUZZY PREDICTION		
{ CS	1.000,	
Ч2	1 1 000	

REMS | 0.002 }

FINAL PREDICTION REFUSAL

The decision system cannot choose between "Calm Sleep" and "Shift Pattern" so it refuses to decide.

This warning means that a thorough opinion of the cardiologist is required.

More training data with situations near this patient profile should strengthen the model in this decision space area.

*Predictor value outside the variation range of the model but inside the allowed extrapolation range. Xtractis will refuse to give a result for an extrapolation far from the allowed extrapolation range. It is one situation of the "Refusal" prediction.

TOP-MODELS BENCHMARK: DECISION STRUCTURE & INTELLIGIBILITY × PERFORMANCE SCORES

		XTRACTIS 🚭	LOGISTIC REGRESSION	RANDOM FOREST	BOOSTED TREE	NEURAL NETWORK	
S	MODELS RELEASE	2022/05	2022/09	2022/04	2022/04	2022/04	
TERS	ALGORITHM VERSION	XTRACTIS REVEAL 12.1.41978	Python 3.9 Scikit-Learn 1.0.2	Python 3.6 LightGBM 2.2.2	Python 3.6 LightGBM 2.2.2	Python 3.6 TensorFlow 2.6.2 Keras 2.6.0	
PARAME	CROSS-VALIDATION Technique	20×5 folds for each CVE model. Then 1-Split Validation for each IVE model: 34% Training 33% Validation 33% Test	20×5 folds for each CVE model	20×5 folds for each CVE model	20×5 folds for each CVE model	20×5 folds for each CVE model	
ELING	NUMBER OF EXPLORED STRATEGIES ⁽¹⁾	1,000 induction strategies for the CVE on Training / Validation data. 2,000 induction strategies for the IVE on synthetic data	2,000 data analysis strategies on Training / Validation data	2,000 ML strategies on Training / Validation data	2,000 ML strategies on Training / Validation data	619 ML strategies on Training / Validation data	
MOD	TOP-MODEL SELECTION ⁽²⁾	Top-CVE among 3,000 CVEs. Then Top-IVE among 2,000 IVEs		Top-CVE selected among 2,000 CVEs an single model obtained by applying be			

TURE	NUMBER OF PREDICTORS (out of 21 Potential Predictors)	18	20	21	20	21	
EL STRUCI	AVERAGE NUMBER OF PREDICTORS PER RULE OR EQUATION	4.2 per rule	8.6 per equation	5.6 per rule	4.8 per rule	28.8 per equation	
loD	STRUCTURE OF THE DECISION SYSTEM	56 fuzzy rules without chaining (aggregated into 10 disjunctive fuzzy rules)	10 linear equations	470 trees without chaining 26,435 binary rules	10 chains of 75 trees 15,932 binary rules	3 hidden layers 90 hidden nodes 100 equations	
TOP		Only some rules are triggered at a time to compute a prediction			Tree #N corrects the error of the N-1 previous trees	90 unintelligible synthetic variables	

S	Ra		XTRACTIS	LoR	RFo	BT	NN	UC03	INTELLIGIBILITY Score			
SCORES	ELLIGIBILITY Score ⁽⁴⁾		4.18	2.30	0.00	0.00	0.00	۔ وہے -2			XTRACTIS	
THE CVE I Gap t IVE R Gap t Avera	CVE Real Performance (Average F1-Score) in External Test Gap to CVE Leader in External Test	15.96 15.96	86.35 -2.70 87.07 0.00 86.71 -1.35	73.95 - 15.10 76.10 - 10.97 75.03 - 13.04	86.70 -2.35 85.59 -1.48 86.15 -1.92	89.05 0.00 86.92 -0.15 87.99 -0.08	87.75 -1.30 85.54 -1.53 86.65 -1.42	- 4- 20 -6 - 8- 10 - -10 - -12 -		LoR		

(1) For all algos: on the same Learning Dataset. All Models are optimized according to their Validation Average F1-Score.
 (2) All top-models are selected according to their Validation Average F1-Score while checking that it remains close to their Training Average F1-Score.
 (3) Baseline performances that models must exceed to perform better than chance (P-value = 0.001; 100,000 models generated by random permutation of the output values). The value of each performance criterion is generally achieved by a different random model.

(4) See Appendices for explanations and detailed results. Performance Scores are calculated on all available unknown data.

More Use Cases: xtractis.ai/use-cases/

APPENDIX 1 - Calculation of the Intelligibility × Performance Scores

Al Technique #i	Ti	$i \in [1; n]$ n = number of AI Techniques benchmarked in terms of data-driven modeling = 5
Benchmark #k	B _k	k∈[1 ; p] p = number of Benchmarks for the Use Case \in {1, 2, 3}

Remarks:

- In case of a small number of reference data, a CVE model (College of Virtual Experts) is generated by each explored
 strategy of T_i, generally via an N×K-fold cross validation. In this case, a Benchmark is led with the top-CVE on the
 External Test Dataset (ETD, composed of unknown reference cases). Then, a top-IVE model (Individual Virtual Expert)
 is generated from the top-CVE, through the XTRACTIS[®] reverse-engineering process, or for the other T_i, by applying
 the top-strategy, which has generated the top-CVE, on the Training and Validation Datasets. And a second Benchmark
 is led with this top-IVE on the same ETD.
- In case of a huge number of reference data, an IVE is generated by each explored strategy of T_i, via a 1-split validation. In this case, Benchmarks are led with the top-IVE on the Test Dataset (TD, composed of unknown reference cases) and on the available ETDs.
- Each Benchmark uses the latest versions of the following algorithms available at the date of the benchmark. XTRACTIS[®]: REVEAL; Logistic Regression: Python, Scikit-Learn; Random Forest & Boosted Tree: Python, LightGBM; Neural Network: Python, TensorFlow, Keras.
- Each B_k uses exactly the same TD and ETD for each T_i model.
- No Regression models can be obtained by Logistic Regression. So, this Data Analysis technique is benchmarked only for Classification or Scoring problems.
- The Holy Grail for critical Al-based decision systems is to obtain a model with the highest Performance and the highest Intelligibility scores (top-right corner of the graph).

PERFORMANCE Score

For each B_{k} , we calculate the values of the Performance Criterion (PC) on the same ETD for all the T_i top-CVEs; and on the same TD and ETDs for all the T_i top-IVEs. The PC is: RMSE in percentage for a Regression; F_1 -Score for a Binomial Classification; Average F_1 -Score or Average F_2 -Score for a Multinomial Classification; Gini index for a Scoring. Then, we compare the value of the PC of each T_i top-CVE (resp. top-IVE) to the best value of this PC reached by the best T_i top-CVE (resp. top-IVE) on ETD (resp. on TD and ETDs).

For Regression, we calculate for each T_i top-model (CVE and IVE): $PS(T_i, B_k) = Best_PC(B_k) - PC(T_i, B_k)$.

For Classification and Scoring, we calculate for each T_i top-model: $PS(T_i, B_k) = PC(T_i, B_k) - Best_PC(B_k)$.

Performance Score of Ti

PS(Ti) = Mean (PS(Ti, Bk)) k ∈ [1; p]

Remark:

• Each PS varies theoretically from -100 (Lowest Score) to 0 (Highest Score), but practically between -50 and 0.

INTELLIGIBILITY Score

We consider the T_i top-IVE. Its Intelligibility Score IS(T_i) is valued from 0.00 to 5.00 regarding the structure of the model: number of predictors, classes, rules, equations, trees, synthetic variables, modalities to predict for classifications (or numeric variables to predict for regressions or scoring). The more compact the model, the higher its IS.

The IS of each T_i is obtained by accumulating the following five penalty values to the ideal IS value of 5.00 (each penalty has a null or a negative value):

- Penalty 1 (logarithmic penalty regarding the number of predictors): **Pen1**(T_i) = min(0, 1 - log₁₀ number of predictors) Examples: Pen1 = 0.00 for up to 10 predictors Pen1 = -3.00 for 10.000 predictors
- Penalty 2 (linear penalty regarding the average number of rules or equations per modality to predict):
 Dep2(T) = min (0, 0, 0, 1) average number of rules or equations per modality to predict)

$Pen2(T_i) = min$	(0 001 -	average number of rules or equations per modality to
	(0,0.01 -	100
Examples:	Pen2 =	0.00 for 1 rule or equation per modality to predict on average

- Pen2 = -3.00 for 301 rules or equations per modality to predict on average
- Penalty 3 (linear penalty regarding the average number of predictors per rule or equation): $Pen3(T_i) = min \left(0, \frac{9-3 \times average \ number \ of \ predictors \ per \ rule \ or \ equation}{2}\right)$

Examples: Pen3 = 0.00 for up to 3.0 predictors per rule or equation on average Pen3 = -3.00 for 10.0 predictors per rule or equation on average

Penalty 4 (linear penalty regarding the number of chained trees, here for BT only):
 Pen4(T_i) = min(0, 1 - number of chained trees)

Examples: Pen4 = 0.00 for 1 tree Pen4 = -3.00 for 4 chained trees

Penalty 5 (maximum penalty due to unintelligibility of synthetic variables, here for NN only): $Pen5(T_i) = -5$

Intelligibility Score of T_i

 $IS(T_i) = max(0.00 , 5.00 + (Pen1+Pen2+Pen3+Pen4+Pen5))$

<u>Remarks:</u>

- For the difference between the Intelligibility and the Explainability of a model, please see the XTRACTIS® Brochure, page 7.
- The real complexity of the process/phenomenon under study is intrinsic, i.e., it could not be reduced or simplified, but only
 discovered; thus, the top-model will be complex if the process/phenomenon turns out to be complex [Zalila 2017].
 Consequently, for some complex process/phenomenon, IS can be equal to 3.00 or less, even if Ti natively produces intelligible
 models (XTRACTIS, Random Forest).
- For similar structures, the Boosted Tree model is always less intelligible than the Random Forest one, as it is composed of chains of trees, instead of a college of trees (see Penalty 4).
- Neural Network model has always the lowest IS of 0.00, because it uses synthetic unintelligible variables (hidden nodes) in
 addition to all the potential predictors (see Penalty 5).

APPENDIX 2 – Use Case Results (all Performance criteria of all Top-Models)

Performance Criterion	Classification Error	Min. Sensitivity	Average Sensitivity	Min. PPV	Average PPV	Min. F1-Score	Average F ₁ -Score	Weighted Average F ₁ -Score	Refusal
RANDOM MODEL					I	1			
Nb of Random Permutations (P-value) = 100,000 (0.001%)									
Performance against chance (External Test)	77.43%	6.67%	15.96%	6.67%	15.96%	6.67%	15.96%	22.57%	
XTRACTIS TOP-MODEL									
CVE - Descriptive Performance (Training)	10.51%	75.41%	88.66%	68.66%	87.93%	71.88%	88.26%	89.53%	0 (0.00%)
CVE - Predictive Performance (Validation)	10.63%	75.41%	88.20%	68.66%	87.92%	71.88%	88.02%	89.42%	0 (0.00%)
CVE - Real Performance (External Test)	12.54%	72.73%	88.04%	61.54%	85.25%	66.67%	86.35%	87.62%	0 (0.00%)
IVE - Descriptive Performance (Training)	1.26%	97.59%	98.98%	96.42%	98.46%	97.47%	98.72%	98.74%	119 (0.48%)
IVE - Predictive Performance (Validation)	1.41%	97.30%	98.59%	96.69%	98.38%	97.37%	98.48%	98.59%	121 (0.51%)
IVE - Real Performance (Test)	1.54%	96.54%	98.50%	96.14%	98.32%	97.47%	98.40%	98.46%	132 (0.55%)
IVE - Real Performance (1,807 original points)	12.42%	75.00%	86.58%	65.22%	86.07%	69.77%	86.23%	87.64%	12 (0.66%)
IVE - Real Performance (External Test)	12.22%	70.00%	88.78%	70.00%	85.98%	70.00%	87.07%	87.82%	8 (2.51%)
LOGISTIC REGRESSION TOP-MODEL									
CVE - Descriptive Performance (Training)	22.13%	52.45%	83.08%	47.27%	70.70%	52.76%	73.92%	78.47%	
CVE - Predictive Performance (Validation)	24.41%	51.53%	78.95%	30.83%	67.96%	44.85%	70.75%	76.44%	
CVE - Real Performance (External Test)	21.94%	55.17%	83.64%	35.29%	71.01%	48.00%	73.95%	78.81%	
IVE - Descriptive Performance (Training)	21.58%	53.37%	82.73%	37.17%	71.15%	53.16%	74.32%	78.99%	
IVE - Real Performance (External Test)	20.06%	55.17%	84.64%	37.50%	73.04%	50.00%	76.10%	80.42%	
RANDOM FOREST TOP-MODEL									
CVE - Descriptive Performance (Training)	0.83%	97.55%	99.60%	84.91%	97.69%	91.84%	98.56%	99.19%	
CVE - Predictive Performance (Validation)	12.62%	72.13%	86.72%	61.97%	83.20%	66.67%	84.81%	87.47%	
CVE - Real Performance (External Test)	11.60%	72.73%	89.55%	61.54%	84.72%	66.67%	86.70%	88.54%	
IVE - Descriptive Performance (Training)	0.89%	97.55%	99.58%	86.54%	97.55%	92.78%	98.50%	99.13%	
IVE - Real Performance (External Test)	12.23%	72.73%	88.09%	61.54%	83.83%	66.67%	85.59%	87.96%	
BOOSTED TREE TOP-MODEL									
CVE - Descriptive Performance (Training)	0.05%	99.69%	99.97%	97.83%	99.78%	99.90%	99.87%	99.94%	
CVE - Predictive Performance (Validation)	10.24%	63.93%	86.05%	83.33%	90.14%	72.90%	87.87%	89.69%	
CVE - Real Performance (External Test)	9.40%	54.55%	88.47%	70.00%	90.65%	66.67%	<u>89.05%</u>	90.51%	
IVE - Descriptive Performance (Training)	0.11%	99.39%	99.94%	97.83%	99.62%	98.90%	99.78%	99.89%	
IVE - Real Performance (External Test)	9.72%	50.00%	84.95%	66.67%	89.98%	57.14%	<u>86.92%</u>	90.07%	
NEURAL NETWORK TOP-MODEL									
CVE - Descriptive Performance (Training)	0.61%	94.92%	99.14%	96.53%	99.32%	97.39%	99.22%	99.39%	
CVE - Predictive Performance (Validation)	10.63%	73.33%	86.08%	78.57%	89.17%	75.86%	87.54%	89.34%	
CVE - Real Performance (External Test)	10.34%	62.50%	85.90%	77.78%	90.30%	70.00%	87.75%	89.54%	
IVE - Descriptive Performance (Training)	3.21%	91.53%	95.74%	90.00%	95.84%	90.76%	95.78%	96.79%	
IVE - Real Performance (External Test)	14.11%	62.50%	84.72%	58.33%	87.56%	60.87%	85.54%	85.94%	

The entirety of this document is protected by copyright. All rights are reserved, particularly the rights of reproduction and distribution. Quotations from any part of the document must necessarily include the following reference: Zalila, Z., Intellitech & Xtractis (2022-2024). XTRACTIS® the Reasoning AI for Trusted Decisions. Use Case #03 | Cardiotocographic Identification of Fetal Heart Conditions – Benchmark vs. Logistic Regression, Random Forest, Boosted Tree & Neural Network. INTELLITECH [intelligent technologies], March 2024, v3.0, Compiegne, France, 7p.