

ADAS / Autonomous Vehicle

EMERGENCY DETECTION FOR AN AUTOMATIC BRAKING ASSIST

Benchmark vs. Random Forest, Boosted Tree & Neural Network

UC#01 - 2024/03 (v2.1)

xtractis.ai

PROBLEM DEFINITION

xtractis

	Design an AI-based decision-making system that makes an accurate and instantaneous diagnosis of driving situations based solely on the car's recordings without cameras, radar or lidar, in order to make a rational decision on whether to activate the EBA.					
PROS & BENEFITS	 helping engineers the occurrence Help engineers their driving sty Enforce the use before embeddi 	rs understan of an emerge design reliabl le. <i>Intelligible</i> of stable and ng them in th	d the causal relationships ency. le intelligible autonomous means that the internal d d transparent models audi ne vehicle.	s between specific parame s vehicles that assist the di ecision logic of the decisio	and certified by the regulator	
REFERENCE DATA	Variable to Predict:		diagnoses the driving situ Brake Assist (EBA).	ation as STANDARD EMER	GENCY to activate or not the	
Source: RENAULT Patent #W002057123 (P. Romieu, C. Lorel, Z. Zalila, J. Benizri, 2001)	Potential Predictors:	from the c		5	river gender and recordings stroke, rod effort, longitudinal	
As the system is dynamic, the performances by points do not secure against a possible instability in decision-making. If, for example, during an emergency braking sequence, the model alternately concludes EMERGENCY and STANDARD over successive time	700	sequences, open road a 52 trials co Test Datase trials) to ch Dataset: : 52 t	from experimental R&D and led by 13 different driv mpose a Learning Datase ets. 56 other trials are use neck the top-model's perfe trials 508,696 situations	campaigns conducted by vers. et for model induction usin ed as a 2 kind-External Tes ormance on real unknown	ons, with and without EBA RENAULT, on test track or ng Training , Validation and st Dataset (by points and by data and for benchmarking. 56 trials 732,000 situations	
lapses, this would cause flaws in the system. For this reason, we need to evaluate the model's performance on driving sequences by trials.	STA	for Training, 15% fo NDARD 3 95.37%	or Validation, 15% for Test EMERGENCY 23,543 4.63%	STANDARD 686,799 93.82%	EMERGENCY 45,201 6.18%	
MODEL TYPE	Regres	sion Mu	Itinomial Classification	Binomial Classification	Scoring	

XTRACTIS-INDUCED DECISION SYSTEM

☑ Intelligible Model, Explainable Decisions	 The top-model is a decision system composed of 25 gradual rules without chaining aggregated into 2 disjunctive rules. Each rule uses from 2 to 6 predictors among the 11 variables that XTRACTIS automatically identified as significant (out of the 17 features describing each driving situation). Only a few rules are triggered at a time to compute the decision.
High Predictive Capacity	It has a very good Real Performance (on unknown data).
Ready to Deploy	It computes real-time predictions up to 70,000 decisions/second, offline or online (API).

STEPS			₽ Ţ	~~ ~		STANDARD EMERGENCY	
	Reference INDUCTION XTRACTION Top-Mode			New Cases	DEDUCTION	Automated Decision (activate EBA or not)	
SOFTWARE ROBOTS	XTRACTIS [®] REVEAL Delivers the decision system + its Structure & Performance Reports			XTRACTIS [®] PREDICT Delivers the decision + the Prediction Report explaining its r			

TOP-MODEL INDUCTION

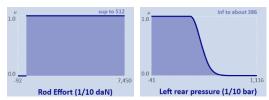
XTRACTIS PROCESS

 INDUCTION
 1. We launch 1,500 inductive reasoning strategies; each strategy is applied to the same single partition of the learning dataset (70% Training / 15% Validation / 15% Test) to get a reliable assessment of the descriptive and predictive performances, respectively from Training and Validation Datasets.

XTRACTIS* REVEAL v11.3.40047

- 2. Each strategy thus generates one unitary model called Individual Virtual Expert (IVE).
- 3. Among the 1,500 induced models, the top-IVE is the one that has the best predictive performance, close to its descriptive performance, and with the fewer predictors and rules.

Total number of induced unitary models	Criterion for the induction optimization	Validation criterion for the top-model selection	Duration of the process (Induction Power FP64)
1,500 IVEs	F ₁ -Score	F ₁ -Score	~18 hours (24 Tflops)


TOP-MODEL STRUCTURE

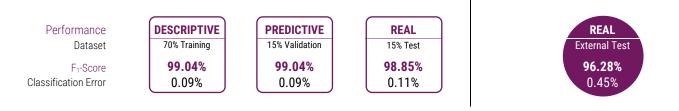
The top-IVE model has a very good intelligibility for a complex phenomenon as it combines the 12 predictors into 25 rules with 3.5 predictors per rule on average. Its Structure Report reveals all the internal logic of the decision system and ensures that the model is understandable by the human expert. It is a transparent model that can be audited and certified before deployment to end-users.

PREDICTORS

- 12 features out of 17
 11 are continuous vehicle data and 1 is nominal (driver's gender).
- Ranked by individual contribution

 (3 strong, 6 medium & 3 weak signals):
 #1 Longitudinal deceleration
 #2 Rod Effort; #3 ... #12
- Labeled by or binary or fuzzy classes and modalities for the gender
 Examples: binary interval "sup. to 512"
 - fuzzy interval "sup: to 312 fuzzy interval "inf. to about 386"

RULES


- 25 conjunctive fuzzy rules without chaining (aggregated into 2 disjunctive fuzzy rules)
- 2 to 6 predictors per rule (on average, 3.5 predictors per rule)
- Example: fuzzy rule **R20** uses 2 predictors and concludes **EMERGENCY**. 25 other rules complete this model.

IF	Longitudinal deceleratio	n IS	sup. to about 62
AND	(1/100 m/s ²) Rod Effort	IS	sup. to 512
AND	(1/10 daN) Left rear pressure	IS	inf. to about 386
AND	(1/10 bar) Longitudinal speed (1/10 km/h)	IS	sup. to about 826
THEN	Driving Situation	IS	EMERGENCY

Literally, the Driving situation is an Emergency (and thus the system activates the EBA) if the Longitudinal deceleration is over around 0.62 m/s², and the Rod effort is superior to 51.2 daN, and the Left rear pressure is under about 38.6 bar, and the Longitudinal speed is over approximately 82.6 km/h.

TOP-MODEL PERFORMANCE

The top-IVE performances, measured in Training / Validation / Test, then in External Test by points on reference data, guarantee the model's predictive and real performances.

USE CASE - INDUSTRY / R&D

XTRACTIS* PREDICT v11.3.40047

EXPLAINED PREDICTIONS FOR 3 UNKNOWN CASES

CASE

(from the External Dataset, i.e., not included in the Learning Dataset)

DEDUCTIVE INFERENCE OF RULES

AUTOMATED DECISION

Powered by:

Longitudinal speed (1/10 km/h) Membrane speed (mm/s)_IT	-7		ਨੂੰ → EMERGENCY	(conflicting rules with close degrees):
				of the driving situation despite hesitation
	12			of the driving situation despite hesitation
Engine speed	694		$\frac{12}{22}$ \rightarrow STANDARD	The system delivers a correct diagnosis
Pressure in mastervac (mbar)	M.V.*			
Manifold pressure (mbar)	M.V.*			{ STANDARD }
Master Cylinder 2 pressure (1/10 bar)	M.V.*		Se → STANDARD	FINAL PREDICTION
Master Cylinder 1 pressure (1/10 bar)	915			
Left rear pressure (1/10 bar)	895		Firing Degree of the Rule 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9	
Rod Effort (1/10 daN)	993		Firing Degree of the Rule	FUZZY PREDICTION { STANDARD 0.470,
Longitudinal deceleration (1/100m/s2)	220	Time	All other 22 rules are not activated.	
Membrane Stroke (1/100 mm)_IT	2,398	Real	and R15 at 0.003	0, 20
actual value = STANDAR	RD	\odot	R10 at 0.470, R19 at 0.422,	3 / 25
SITUATION # Marie-F.frein150		•••	For this driving situation, 3 rules are triggered:	NUMBER OF TRIGGERED RULES
			$\frac{S}{2} \rightarrow \text{EMERGENCY}$	No EBA activation
Driver Gender	man			actual situation in the experiment:
Membrane speed (mm/s)_IT	-51		$\frac{2}{2}$ \rightarrow STANDARD	of the driving situation compared to the
Longitudinal speed (1/10 km/h)	196		Ê → STANDARD	The system delivers a correct diagnosis
Engine speed	694		$\frac{1}{2}$ \rightarrow standard	
Pressure in mastervac (mbar)	M.V.*		$\frac{2}{6}$ \rightarrow standard	{ STANDARD }
Manifold pressure (mbar)	M.V.*		$\stackrel{\bullet}{\simeq}$ \rightarrow standard	FINAL PREDICTION
Master Cylinder 2 pressure (1/10 bar)	M.V.*		0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9	
Master Cylinder 1 pressure (1/10 bar)	0		Firing Degree of the Rule	EMERGENCY 0.176 }
Left rear pressure (1/10 bar)	3			{ STANDARD 1.000,
Rod Effort (1/10 daN)	21		All other 18 rules are not activated.	FUZZY PREDICTION
Longitudinal deceleration (1/100m/s2)	67	Time	and R25 at 0.003	
Membrane Stroke (1/100 mm)_IT	273	Real	R13 at 0.080, R4 at 0.051, R10 at 0.004	7 / 25
actual value = STANDAR		(1)	R14 at 1.000, R12 at 0.856, R17 at 0.176	NUMBER OF TRIGGERED RULES
SITUATION #Jean-Pierre frein7	8 99.94s	•••	For this driving situation, 7 rules are triggered:	
			Scare → EMERGENCY	EBA activation
			E → EMERGENCY	
Driver Gender	man		≝ → EMERGENCY	actual situation in the experiment:
Membrane speed (mm/s)_IT	123			of the driving situation compared to the
Longitudinal speed (1/10 km/h)	897		$\frac{2}{2}$ \rightarrow standard	The system delivers a correct diagnosis
Engine speed	3,395			
Pressure in mastervac (mbar)	M.V.*		Se → STANDARD	{ EMERGENCY }
Manifold pressure (mbar)	M.V.*		$\frac{1}{2}$ \rightarrow standard	FINAL PREDICTION
Master Cylinder 2 pressure (1/10 bar)	M.V.*		0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9	
Master Cylinder 1 pressure (1/10 bar)	595		Firing Degree of the Rule	STANDARD 0.375 }
Left rear pressure (1/10 bar)	256		AII OTHEL TO TURES ARE HOL ACTIVATED.	{ EMERGENCY 1.000,
Rod Effort (1/10 daN)	882		All other 18 rules are not activated.	FUZZY PREDICTION
Longitudinal deceleration (1/100m/s2)	244	Time	and R12 at 0.081	
Membrane Stroke (1/100 mm)_IT	1,534	() Real	R18 and R20 at 1.000, R19 at 0.600, R10 at 0.375, R4 at 0.331, R13 at 0.091	7 / 25
actual value = EMERGEN				7/95

During this recording, the system in fact just switched from an "emergency" to a "standard" state, no longer requiring additional EBA. It is an evolutionary temporal process, where we gradually pass from one state to another. However, the system should have made this change of state 18 records ago, i.e., 0.06s earlier.

*M.V. = Missing Values. These parameters were not measured during the External Test campaign.

XTRACTIS for ADAS & Autonomous Vehicles: Emergency Detection for an Automatic Braking Assist – March 2024 © Z. ZALILA & INTELLITECH [intelligent technologies]. 2002-2024. All Rights Reserved.

TOP-MODELS BENCHMARK: DECISION STRUCTURE & INTELLIGIBILITY × PERFORMANCE SCORES

		XTRACTIS 🔣	RANDOM FOREST	BOOSTED TREE	NEURAL NETWORK	
: PARAMETER	MODELS RELEASE	2021/11	2021/11	2021/11	2021/11	
	ALGORITHM VERSION	XTRACTIS REVEAL 11.3.40047	Python 3.6 LightGBM 2.2.2	Python 3.6 LightGBM 2.2.2	Python 3.6 TensorFlow 2.7 Keras 2.1.4	
	CROSS-VALIDATION Technique	All explored strategies for	all algorithms use the same single-split of the Lea	rning Dataset: 70% Training 15% Validation 15% T	Test	
	NUMBER OF EXPLORED STRATEGIES ⁽¹⁾	500 induction strategies	500 ML strategies	500 ML strategies	500 ML strategies	
MODELI	TOP-MODEL SELECTION ⁽²⁾	Top-IVE among 500 IVEs	Top-IVE among 500 IVEs	Top-IVE among 500 IVEs	Top-IVE among 500 IVEs	

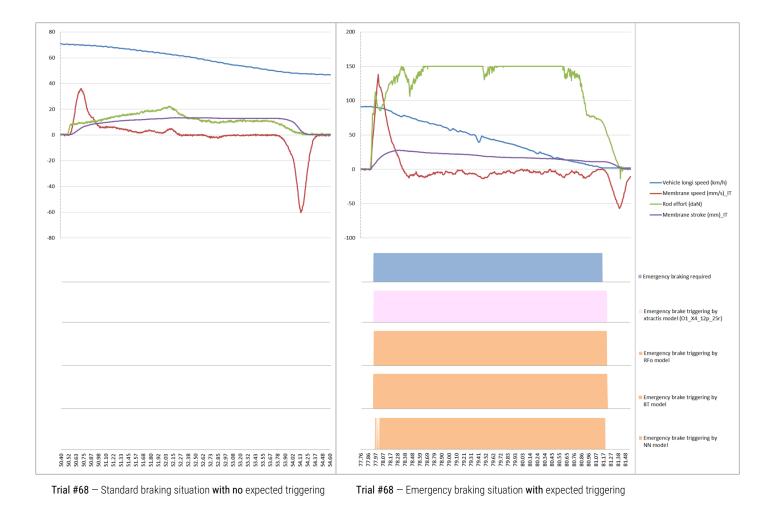
TURE	NUMBER OF PREDICTORS (out of 17 Potential Predictors)	12	17	17	17
STR	AVERAGE NUMBER OF PREDICTORS PER RULE OR EQUATION	3.5 per rule	5.0 per rule	5.7 per rule	20.8 per equation
TOP-MODEL	STRUCTURE OF THE DECISION SYSTEM	25 fuzzy rules without chaining (aggregated into 2 disjunctive fuzzy rules)	12 trees without chaining 851 binary rules	1 chain of 169 trees 7,415 binary rules	4 hidden layers 88 hidden nodes 89 equations
TOP		Only some rules are triggered at a time to compute a prediction		Tree #N corrects the error of the N-1 previous trees	88 unintelligible synthetic variables

ទ		XTRACTIS	RFo	BT	NN	UC01	. 0	INTELLIGIBILITY Sc 1 2	ore 3 4 5
ORES	INTELLIGIBILITY Score ⁽⁴⁾	4.59	0.00	0.00	0.00	0			
SC	IVE Real Performance (F1-Score) in Test	98.85	98.06	99.75	93.52	core	RF0		
Ш	Gap to IVE Leader in Test	-0.90	-1.69	0.00	-6.23	S -2	RFo 🔵		
ā	IVE Real Performance (F1-Score) in External Test	96.28	94.45	94.44	89.16	ANC			
2	Gap to IVE Leader in External Test	0.00	-1.83	-1.84	-7.12	3M/			
-MODI	IVE Real Performance (F1-Score) in External Test	100.00	98.25	97.39	100.00	E 4			
TOP	Gap to IVE Leader in External Test	0.00	-1.75	-2.61	0.00	-4 Hand	NN O		
Ĕ	Average Real Performance	98.38	96.92	97.19	94.23	-			
	PERFORMANCE Score ⁽⁴⁾	-0.30	-1.76	-1.48	-4.45	-6			

For all algos: on the same Learning Dataset. All Models are optimized according to their Validation F1-Score.
 All top-models are selected according to their Validation F1-Score while checking that it remains close to their Training F1-Score.

(3) Baseline performances that models must exceed to perform better than chance (P-value = 0.001; 100,000 models generated by random permutation of the output values). The value of each performance criterion is generally achieved by a different random model.

(4) See Appendices 4 & 5 for explanations and detailed results. Performance Scores are calculated on all available unknown data.

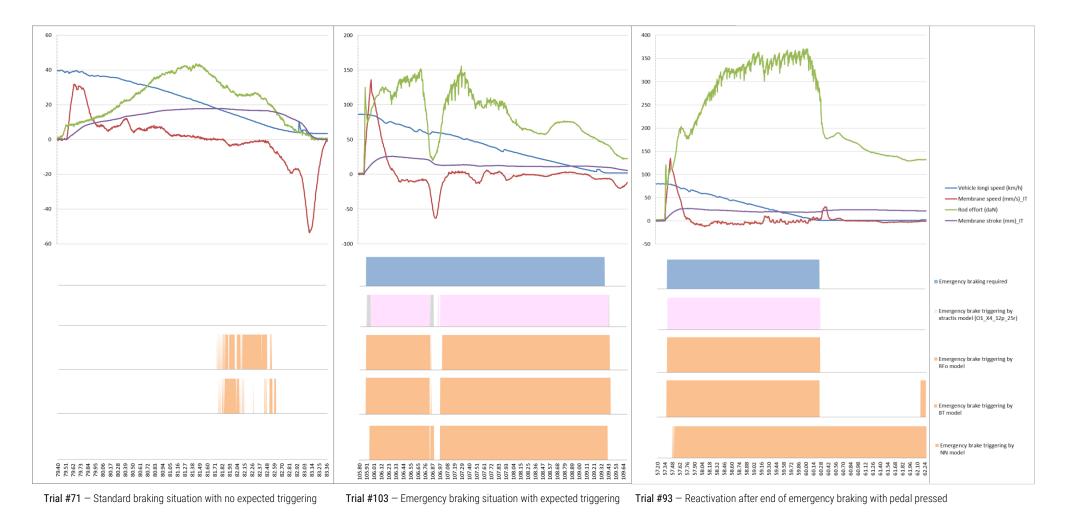

More Use Cases: xtractis.ai/use-cases/

APPENDIX 1 – Examples of Right and Wrong Diagnoses (from External Test trials)

The following graphs show driving situations over 4-5 seconds, either with a standard braking sequence or requiring emergency braking (blue band). Wrong diagnoses are taken from the problematic cases identified above.

1/ Situations with correct diagnosis from the models

The 4 decisional systems correctly diagnose standard braking, as there is no untimely activation of the EBA. When emergency braking is requested, the NN top-IVE hesitates at the beginning of the sequence, while the XTRACTIS, RFo, and BT top-IVE react perfectly.


XTRACTIS®, THE REASONING AI FOR TRUSTED DECISION

2/ Situations with problematic diagnosis from the models

During Trial #71, standard braking is well diagnosed by the XTRACTIS and NN top-IVE, while the RFo and BT top-IVE unexpectedly activate EBA.

During Trial #103, when the driver stops braking for a short time (dip in the green curve) and then brakes again, the 4 decisional systems react poorly and lead to the EBA disconnection. The disconnection is more prolonged for the RFo and BT models.

During Trial #93, when the driver continues to brake whereas there is no more emergency, the XTRACTIS and RFo models react perfectly by disconnecting EBA. The BT model also triggers deactivation but decides to reactivate EBA after 2 seconds without any need. The NN model does not disconnect EBA at all.

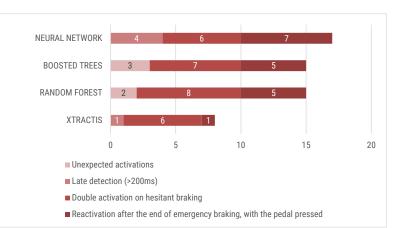
APPENDIX 2 - Problematic Cases (from External Test trials)

Each trial consists of driving data that include at least one normal situation and sometimes an emergency. We count the emergency braking sequences detected, and the delay between detection and actual emergency. If the model does not detect an emergency, we count an unfortunate non-triggering. Alternatively, for standard driving or braking sequences, if the model detects an emergency wrongly, we count an unexpected activation. Besides, we notice 2 other types of problematic cases related to specific driving situations:

- 1. Hesitant braking: the driver hesitates and brakes in 2 steps. If the system disconnects between the 2 steps, we count a double activation.
- 2. Reactivation after the end of emergency braking, with the pedal pressed: the driver keeps pressing the brake pedal after the vehicle has stopped, sometimes placing the model in a new emergency situation while the vehicle is stationary.

APPENDIX 3 - XTRACTIS vs. Classic Fuzzy Expert Systems

Data from this study was originally used in 1999 to help develop "by hand" a decision support system based on fuzzy rules: an auto-adaptive emergency braking assistance system had been invented by Z. Zalila & INTELLITECH for RENAULT in early 2000. It was subsequently patented [W002057123] (2001) by RENAULT.


This system was designed using the "traditional" fuzzy logic approach, i.e., the manual design of the fuzzy decision rules, reproducing the human expertise, thanks to our expertise as drivers.

It is, therefore, interesting to compare the two approaches, their main features, and their results. Even if both are fuzzy logic-based approaches, leading to intelligible models (thus auditable and certifiable), we highlight the limitations of traditional Fuzzy Symbolic AI compared to the XTRACTIS Augmented Fuzzy Symbolic AI.

And even if the XTRACTIS top-IVE is perfectible by injecting new data, for example, by merging with data from new sensors, to eliminate the identified problematic cases and further improve its performances, we can affirm that XTRACTIS has met the challenge!

Benefits of XTRACTIS AI vs. classic Fuzzy AI:

- ☑ Overcoming human cognitive limitations: more parameters and driving situations could be considered.
- ☑ Much higher performances: greater reliability of the decision-making strategy.
- $\ensuremath{\boxdot}$ Much faster and less expensive design

	Classic Fuzzy Expert System	XTRACTIS System		
Design Approach	Human induction	Automatic induction		
Design Time	24-man months	Max. 1 day with a 24 Tflops HPC server		
Number of Rules	25 fuzzy rules for short time diagnosis + 2 fuzzy rules for braking behavior + 1 Fuzzy Relation of order 3	25 fuzzy rules		
Number of Predictors	4 (cognitive limitation of the human modeler)	12 (selected automatically)		
Performance	Descriptive model only: incremental performance by trial/error	Robust predictive model: systematic estimation of descriptive and predictive performance by cross-validation		

APPENDIX 4 - Calculation of the Intelligibility × Performance Scores

Al Technique #i	Ti	$i \in [1; n]$ n = number of AI Techniques benchmarked in terms of data-driven modeling = 5
Benchmark #k	B _k	$k \in [1; p]$ p = number of Benchmarks for the Use Case $\in \{1, 2, 3\}$

Remarks:

- In case of a small number of reference data, a CVE model (College of Virtual Experts) is generated by each explored
 strategy of T_i, generally via an N×K-fold cross validation. In this case, a Benchmark is led with the top-CVE on the
 External Test Dataset (ETD, composed of unknown reference cases). Then, a top-IVE model (Individual Virtual Expert)
 is generated from the top-CVE, through the XTRACTIS[®] reverse-engineering process, or for the other T_i, by applying
 the top-strategy, which has generated the top-CVE, on the Training and Validation Datasets. And a second Benchmark
 is led with this top-IVE on the same ETD.
- In case of a huge number of reference data, an IVE is generated by each explored strategy of T_i, via a 1-split validation. In this case, Benchmarks are led with the top-IVE on the Test Dataset (TD, composed of unknown reference cases) and on the available ETDs.
- Each Benchmark uses the latest versions of the following algorithms available at the date of the benchmark. XTRACTIS[®]: REVEAL; Logistic Regression: Python, Scikit-Learn; Random Forest & Boosted Tree: Python, LightGBM; Neural Network: Python, TensorFlow, Keras.
- Each B_k uses exactly the same TD and ETD for each T_i model.
- No Regression models can be obtained by Logistic Regression. So, this Data Analysis technique is benchmarked only for Classification or Scoring problems.
- The Holy Grail for critical Al-based decision systems is to obtain a model with the highest Performance and the highest Intelligibility scores (top-right corner of the graph).

PERFORMANCE Score

For each B_{k_i} we calculate the values of the Performance Criterion (PC) on the same ETD for all the T_i top-CVEs; and on the same TD and ETDs for all the T_i top-IVEs. The PC is: RMSE in percentage for a Regression; F_1 -Score for a Binomial Classification; Average F_1 -Score or Average F_2 -Score for a Multinomial Classification; Gini index for a Scoring. Then, we compare the value of the PC of each T_i top-CVE (resp. top-IVE) to the best value of this PC reached by the best T_i top-CVE (resp. top-IVE) on ETD (resp. on TD and ETDs).

For Regression, we calculate for each T_i top-model (CVE and IVE): $PS(T_i, B_k) = Best_PC(B_k) - PC(T_i, B_k)$.

For Classification and Scoring, we calculate for each T_i top-model: $PS(T_i, B_k) = PC(T_i, B_k) - Best_PC(B_k)$.

Performance Score of Ti

 $PS(T_i) = Mean (PS(T_i, B_k))_{k \in [1; p]}$

Remark:

• Each PS varies theoretically from -100 (Lowest Score) to 0 (Highest Score), but practically between -50 and 0.

INTELLIGIBILITY Score

We consider the T_i top-IVE. Its Intelligibility Score IS(T_i) is valued from 0.00 to 5.00 regarding the structure of the model: number of predictors, classes, rules, equations, trees, synthetic variables, modalities to predict for classifications (or numeric variables to predict for regressions or scoring). The more compact the model, the higher its IS.

The IS of each T_i is obtained by accumulating the following five penalty values to the ideal IS value of 5.00 (each penalty has a null or a negative value):

- Penalty 1 (logarithmic penalty regarding the number of predictors): Pen1(T_i) = min(0, 1 $- \log_{10}$ number of predictors) Examples: Pen1 = 0.00 for up to 10 predictors Pen1 = -3.00 for 10.000 predictors
- Penalty 2 (linear penalty regarding the average number of rules or equations per modality to predict):

 $\begin{array}{l} \text{Pen2}(T_i) = \min\left(0, 0.01 - \frac{average \ number \ of \ rules \ or \ equations \ pr \ modality \ to \ predict}{100}\right) \\ \text{Examples:} \qquad Pen2 = 0.00 \ for \ 1 \ rule \ or \ equation \ per \ modality \ to \ predict \ on \ average \end{array}$

Pen2 = -3.00 for 301 rules or equation per modality to predict on average

- Penalty 3 (linear penalty regarding the average number of predictors per rule or equation): $Pen3(T_i) = min \left(0, \frac{9-3 \times average \ number \ of \ predictors \ per \ rule \ or \ equation}{2}\right)$

> Examples: Pen3 = 0.00 for up to 3.0 predictors per rule or equation on average Pen3 = -3.00 for 10.0 predictors per rule or equation on average

Penalty 4 (linear penalty regarding the number of chained trees, here for BT only):
 Pen4(T_i) = min(0, 1 - number of chained trees)

Examples: Pen4 = 0.00 for 1 tree Pen4 = -3.00 for 4 chained trees

Penalty 5 (maximum penalty due to unintelligibility of synthetic variables, here for NN only): $Pen5(T_i) = -5$

Intelligibility Score of T_i

 $IS(T_i) = max(0.00 , 5.00 + (Pen1+Pen2+Pen3+Pen4+Pen5))$

<u>Remarks:</u>

- For the difference between the Intelligibility and the Explainability of a model, please see the XTRACTIS® Brochure, page 7.
- The real complexity of the process/phenomenon under study is intrinsic, i.e., it could not be reduced or simplified, but only
 discovered; thus, the top-model will be complex if the process/phenomenon turns out to be complex [Zalila 2017].
 Consequently, for some complex process/phenomenon, IS can be equal to 3.00 or less, even if Ti natively produces intelligible
 models (XTRACTIS, Random Forest).
- For similar structures, the Boosted Tree model is always less intelligible than the Random Forest one, as it is composed of chains of trees, instead of a college of trees (see Penalty 4).
- Neural Network model has always the lowest IS of 0.00, because it uses synthetic unintelligible variables (hidden nodes) in
 addition to all the potential predictors (see Penalty 5).

APPENDIX 5 – Use Case Results (all Performance criteria of all Top-Models)

Performance Criterion	Classification Error	Min. Sensitivity Specificity	Sensitivity	Specificity	PPV	NPV	F ₁ -Score	Refusal
XTRACTIS TOP-MODEL								
IVE - Descriptive Performance (Training)	0.09%	99.18%	99.18%	99.95%	98.91%	99.96%	99.04%	311 (0.09%)
IVE - Predictive Performance (Validation)	0.09%	98.75%	98.75%	99.97%	99.34%	99.94%	99.04%	75 (0.10%)
IVE - Real Performance (Test)	0.11%	98.89%	98.89%	99.94%	98.81%	99.95%	98.85%	67 (0.09%)
IVE - Real Performance (External Test by points)	0.45%	94.37%	94.37%	99.89%	98.26%	99.63%	96.28%	400 (0.05%)
IVE - Real Performance (External Test by trials)	0.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	0 (0.00%)
RANDOM FOREST TOP-MODEL								
IVE - Descriptive Performance (Training)	0.17%	97.75%	97.75%	99.94%	98.66%	99.89%	98.20%	
IVE - Predictive Performance (Validation)	0.11%	99.57%	99.57%	99.96%	99.83%	99.91%	99.70%	
IVE - Real Performance (Test)	0.18%	97.54%	97.54%	99.93%	98.60%	99.88%	98.06%	
IVE - Real Performance (External Test by points)	0.66%	91.12%	91.12%	99.89%	98.04%	99.42%	94.45%	
IVE - Real Performance (External Test by trials)	0.88%	98.82%	100.00%	98.82%	96.55%	100.00%	98.25%	
BOOSTED TREE TOP-MODEL								
IVE - Descriptive Performance (Training)	0.00%	100.00%	100.00%	100.00%	99.98%	100.00%	99.99%	
IVE - Predictive Performance (Validation)	0.01%	99.83%	99.83%	100.00%	99.97%	99.99%	99.90%	
IVE - Real Performance (Test)	0.02%	99.72%	99.72%	99.99%	99.77%	99.99%	99.75%	
IVE - Real Performance (External Test by points)	0.67%	92.55%	92.55%	99.77%	96.41%	99.51%	94.44%	
IVE - Real Performance (External Test by trials)	1.33%	98.23%	100.00%	98.23%	94.92%	100.00%	97.39%	
NEURAL NETWORK TOP-MODEL								
IVE - Descriptive Performance (Training)	0.56%	90.65%	90.65%	99.87%	97.03%	99.55%	93.73%	
IVE - Predictive Performance (Validation)	0.54%	90.71%	90.71%	99.88%	97.44%	99.55%	93.96%	

TVE - Descriptive Performance (Training)	0.50%	90.05%	90.05%	99.87%	97.03%	99.00%	93.73%	
IVE - Predictive Performance (Validation)	0.54%	90.71%	90.71%	99.88%	97.44%	99.55%	93.96%	
IVE - Real Performance (Test)	0.58%	90.46%	90.46%	99.85%	96.79%	99.54%	93.52%	
IVE - Real Performance (External Test by points)	1.27%	84.78%	84.78%	99.64%	94.01%	99.00%	89.16%	
IVE - Real Performance (External Test by trials)	0.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	

The entirety of this document is protected by copyright. All rights are reserved, particularly the rights of reproduction and distribution. Quotations from any part of the document must necessarily include the following reference: Zalila, Z., Intellitech & Xtractis (2016-2024). XTRACTIS® the Reasoning AI for Trusted Decisions. Use Case #01 | ADAS & Autonomous Vehicles: Emergency Detection for an Automatic Braking Assist – Benchmark vs Random Forest, Boosted Tree & Neural Network. INTELLITECH [intelligent technologies], March 2024, v2.1, Compiegne, France, 9p.