

Defense

PASSIVE MAGNETIC IDENTIFICATION OF LAND MINES

Benchmark vs. Logistic Regression, Random Forests, Boosted Trees & Neural Networks

2024/02 (v3.0)

xtractis.ai

PROBLEM DEFINITION

GOAL	-	d decision system that accurately detects land mines and identifies the type of ew variables, to instantly deliver the appropriate rational decision.
PROS & BENEFITS		-and-effect relationships between the relevant predictors among the 3 parameter nd the actual presence of a mine and its type.
	 Enhance demines to identify the to 	ning technicians and military experts' knowledge by understanding the strategie type of mine.
		s to design enhanced mine detectors, manual or autonomous, embedding ng explainable and accurate automated decisions.
		tary profession in making a more reliable decision, thanks to rapid, systemati d safer detection process with a passive magnetic sensor.
REFERENCE DATA	Variable to Predict	The model identifies the soil content: NO MINE ANTI-PERSONNEL MINE ANTI-TANK MINE
Source: Cemal YILMAZ, Department of Electrical and Electronics Engineering, Gazi University, Ankara, Turkey.	Predictive Variables	3 potential predictors characterizing each situation: VOLTAGE value due to magnet distortion, SOIL TYPE, SENSOR HEIGHT from the ground.
Dataset: Dua, D. and Graff, C. (2019). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml] Irvine, CA: University of California, School of Information and Computer Science	Observations	338 object detection experiments; each is associated with a no-mine case or mine case specifying the type of mine. Data are divided into a Learning Dataset for model induction using Training and Validation Datasets, and an External Tes Dataset to check the top model's performance on real unknown data and for benchmarking.
		Learning Dataset: 287 cases 84.91% 80% for Training, 20% for Validation External Test Dataset: 51 cases 15.09%
		MINE ANTI-PERSONNEL MINE ANTI-TANK MINE NO MINE ANTI-PERSONNEL MINE ANTI-TANK MINE 20.91% 167 58.19% 60 20.91% 11 21.57% 30 58.82% 10 19.61%
MODEL TYPE	Regress	ion Multinomial Classification Binomial Classification Scoring

XTRACTIS-INDUCED DECISION SYSTEM

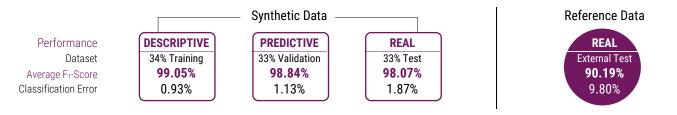
 Intelligible Model, Explainable Decisions 	The top-model is a decision system composed of 29 gradual rules without chaining , each rule uses 1 to 3 variables that XTRACTIS identified as predictors . Moreover, only a few rules are triggered at a time to compute the decision.
High Predictive Capacity	It has a good Real Performance (on unknown data).
Efficient Al System	It computes real-time predictions up to 70,000 decisions/second, offline or online (API).

XTRACTIS for Safety & Security: Passive Magnetic Identification of Land Mines – February 2024 © Z. ZALILA & INTELLITECH [intelligent technologies]. 2002-2024. All Rights Reserved.

STEPS		()→	₽ŢŢ₽		•••• ===	NO MINE	ANTI- PERSONNEL MINE	ANTI-TANK MINE
	Reference Data	INDUCTION	XTRACTIS Top-Model	New Cases	DEDUCTION		Automated Dec (detect & identify	
SOFTWARE ROBOTS	Delivers the decisior	XTRACTIS [®] REVE n system + its Structure	EAL e & Performance Reports	Delivers th			PREDICT Report explaining	g its reasoning

TOP-MODEL INDUCTION

XTRACTIS PROCESS


Learning Dataset to get a	a reliable assessment of t							
aggregated with 3 possibl 3. Among the 6,000 induced	le operators into a College d CVEs, the top-CVE with	of Virtual Experts (CVE).						
Given the small number of reference cases in the reference dataset, the XTRACTIS CVE→IVE Reverse-Engineering process is necessary to get a more intelligible model:								
4. We build a synthetic dataset composed of 14,350 new cases simulated by deduction from the top-CVE, around the 287 original learning cases but distinct from them.								
	5. We apply 2,000 induction strategies to the same single 34% Training 33% Validation 33% Test partition of this new dataset: XTRACTIS induces 2,000 IVEs.							
6. The top-IVE selected is as robust as the top-CVE, but more intelligible: 29 rules sharing 3 predictors.								
Total number of induced unitary models	Criterion for the induction optimization	Validation criterion for the top-model selection	Duration of the process (Induction Power FP64)					
402,000 IVEs	Average F ₁ -Score	Average F ₁ -Score	9,5 Hours (1 Tflops)					
rules, aggregated into 3 disju system and ensures that the	nctive rules. The Structure model is understandable b	Report reveals all the interna	l logic of the decision					
	Learning Dataset to get from Training and Validat 2. Each strategy thus gener aggregated with 3 possib 3. Among the 6,000 induce rules sharing 3 predictors Given the small number of re process is necessary to get a 4. We build a synthetic datas the 287 original learning of 5. We apply 2,000 induction this new dataset: XTRAC 6. The top-IVE selected is as Total number of induced unitary models 402,000 IVEs The top-IVE model has an ex rules, aggregated into 3 disju system and ensures that the	Learning Dataset to get a reliable assessment of the from Training and Validation Datasets.2. Each strategy thus generates 200 unitary models of aggregated with 3 possible operators into a College3. Among the 6,000 induced CVEs, the top-CVE with rules sharing 3 predictors.Given the small number of reference cases in the reference process is necessary to get a more intelligible model:4. We build a synthetic dataset composed of 14,350 ne the 287 original learning cases but distinct from the 287 original learning cases but distinct from the the new dataset: XTRACTIS induces 2,000 IVEs.6. The top-IVE selected is as robust as the top-CVE, but Total number of induced unitary models 402,000 IVEs402,000 IVEsThe top-IVE model has an excellent intelligibility as it co rules, aggregated into 3 disjunctive rules. The Structure	 Each strategy thus generates 200 unitary models called Individual Virtual Expertaggregated with 3 possible operators into a College of Virtual Experts (CVE). Among the 6,000 induced CVEs, the top-CVE with the best predictive performarules sharing 3 predictors. Given the small number of reference cases in the reference dataset, the XTRACTIS CV process is necessary to get a more intelligible model: We build a synthetic dataset composed of 14,350 new cases simulated by deduct the 287 original learning cases but distinct from them. We apply 2,000 induction strategies to the same single 34% Training 33% Valid this new dataset: XTRACTIS induces 2,000 IVEs. The top-IVE selected is as robust as the top-CVE, but more intelligible: 29 rules share top-model selection Average F1-Score Validation criterion for the top-IVE model has an excellent intelligibility as it combines the 3 predictors presrules, aggregated into 3 disjunctive rules. The Structure Report reveals all the interna system and ensures that the model is understandable by the human expert. It is a training set to the same set of the sam					

 3 out of 3 parameters (2 continuous + 1 nominal) 29 connective fuzzy rules without chaining (aggregated into 3 disjunctive fuzzy rules) . Ranked by impact significance (1 strong predictor, 2 medium predictors): 1 to 3 predictors per rule (on average, 2.5 predictors per rule) #1 Voltage /#2 .. Example: fuzzy rule R14 uses 3 predictors and concludes ANTI-PERSONNEL Labeled by binary and fuzzy classes. MINE. 28 other rules complete this model, including 3 binary rules. Examples: binary interval "[4.00; 6.61]" [4.00; 6.61] V IF Voltage IS in fuzzy interval "inf to about 11.3" AND Sensor Height IS inferior to ~11.3 cm {Dry and Limy, Dry and Sandy, Humid IS in AND Soil Type and Humus, Humid and Limy, Humid and Sandy} **ANTI-PERSONNEL MINE** THEN Object IS 2.10 Literally, the detected Object is Anti-Personnel Mine if the Voltage value due to magnetic e (V) ht (cm

distortion is between 4.00V and 6.61V, and the Sensor is under approximately 11.3cm to the ground, and the soil is of any type except Dry and Humus.

TOP-MODEL PERFORMANCE

The top-IVE performances, measured in Training/Validation/Test on synthetic data, then in External Test on reference data, guarantee the model's predictive and real performances.

XTRACTIS for Safety & Security: Passive Magnetic Identification of Land Mines - February 2024 © Z. ZALILA & INTELLITECH [intelligent technologies]. 2002-2024. All Rights Reserved.

EXPLAINED PREDICTIONS FOR 3 UNKNOWN CASES

Powered by: XTRACTIS* v13.0.44978

*Predictor value is out of the variation Range of the model (<2.65 % 00R for case #253) but inside the allowed extrapolation range. XTRACTIS will refuse to give a result for an extrapolation outside the allowed extrapolation range. It is one situation of the "Refusal" prediction.

TOP-MODELS BENCHMARK

	XTRACTIS 🔣	LOGISTIC REGRESSION	RANDOM FOREST	BOOSTED TREES	NEURAL NETWORK				
2 MODELS RELEASE	2023/03 N XTRACTIS REVEAL 13.0.44978 40×5 folds for each CVE model. Then 1-Split Validation for each IVE model: 34% Training 33% Validation 33% Test	2023/03	2023/03	2023/03	2023/03				
ALGORITHM VERSION		Python 3.9.10 Scikit-Learn 1.1.2	Python 3.9.10 LightGBM 3.3.2	Python 3.9.10 LightGBM 3.3.2	Python 3.9.10 TensorFlow 2.10.0 Keras 2.10.0				
ALGORITHM VERSION CROSS-VALIDATION TECHNIQUE	1-Split Validation for each IVE model: 34%	40×5 folds for each CVE model	40×5 folds for each CVE model	40×5 folds for each CVE model	40×5 folds for each CVE model				
NUMBER OF EXPLORED STRATEGIES ⁽¹⁾ TOP-MODEL SELECTION ⁽²⁾	Training / Validation data. 2,000 induction	2,000 data analysis strategies on Training / Validation data	2,000 ML strategies on Training / Validation data	2,000 ML strategies on Training / Validation data	2,000 ML strategies on Training / Validation data				
TOP-MODEL SELECTION ⁽²⁾	Top-CVE among 6,000 CVEs. Then Top-IVE among 2,000 IVEs	Tap CV/E calcoted among 2,000 CV/Eq, then single model obtained by applying best CV/E strategy on 100% of							

STRUCTURE	NUMBER OF PREDICTORS (out of 3 Potential Predictors)	3	6 1 nominal predictor with 6 modalities split into 6 predictors	2	3	8 1 nominal predictor with 6 modalities split into 6 predictors
	AVERAGE NUMBER OF PREDICTORS PER RULE / EQUATION	2.5 per rule	2.7 per equation	1.8 per rule	2.1 per rule	22.1 per equation
TOP-MODEL	STRUCTURE OF THE DECISION SYSTEM	29 fuzzy rules without chaining aggregated into 3 disjunctive rules	3 linear equations	72 trees 1,117 binary rules	3 chains of 66 trees each 1,355 binary rules	4 hidden layers 91 hidden nodes 94 equations
ТО		Only a few rules are triggered at a time to compute a decision			Tree #N corrects the error of the N-1 previous trees	91 unintelligible synthetic variables

INTELLIGIBILITY × PERFORMANCE SCORES (Performance Score is calculated on all available unknown data)

	Random ⁽³⁾	XTRACTIS	LoR	RFo	BT	NN
INTELLIGIBILITY Score ⁽⁴⁾		4.91	5.00	1.29	0.00	0.00
CVE Real Performance (Average F1-Score) in External Test	55.66%	90.19	81.04	75.26	76.68	89.87
Gap to CVE Leader in External Test		0.00	-9.15	-14.93	-13.51	-0.32
IVE Real Performance (Average F1-Score) in External Test	55.66%	90.19	82.67	73.86	78.99	89.87
Gap to IVE Leader in Test		0.00	-7.52	-16.33	-11.20	-0.32
Top-IVE Average Real Performance	55.66%	90.19	81.86	74.56	77.84	89.87
PERFORMANCE Score ⁽⁴⁾		0.00	-8.33	-15.63	-12.36	-0.32

(1) For all algos: on the same Learning Dataset. All Models are optimized according to their validation Average F1-Score.

(2) All top-models are selected according to their validation Average F1-Score while checking that it remains close to their training Average F1-Score.

(3) Baseline performances that models must exceed to perform better than chance (P-value = 0.001; 100,000 models generated by random permutation of the output values). The value of each performance criterion is generally achieved by a different random model. (4) See Appendices for explanations and detailed results.

More Use Cases: xtractis.ai/use-cases/

LOR

INTELLIGIBILITY Score

3

4 KTRACTIS

2

0

NN (

BT

1

RFo

APPENDIX 1 – Calculation of the Intelligibility × Performance

Al Technique #i	Ti	$i \in [1; n]$ n = number of AI Techniques benchmarked in terms of data-driven modeling = 5
Benchmark #k	B _k	k∈[1 ; p] p = number of Benchmarks for the Use Case \in {1, 2, 3}

Remarks:

- In case of a small number of reference data, a CVE model (College of Virtual Experts) is generated by each explored strategy of T_i, generally via an N×K-fold cross validation. In this case, a Benchmark is led with the top-CVE on the External Test Dataset (ETD, composed of unknown reference cases). Then, a top-IVE model (Individual Virtual Expert) is generated from the top-CVE, through the XTRACTIS® reverse-engineering process, or for the other Ti, by applying the top-strategy, which has generated the top-CVE, on the training and validation datasets. And a second Benchmark is led with this top-IVE on the same ETD.
- In case of a huge number of reference data, an IVE is generated by each explored strategy of T_i, via a 1-split validation. In this case, Benchmarks are led with the top-IVE on the Test Dataset (TD, composed of unknown reference cases) and on the available ETDs.
- Each Benchmark uses the latest versions of the following algorithms available at the date of the benchmark. XTRACTIS[®]: REVEAL; Logistic Regression: Python, Scikit-Learn; Random Forest & Boost Trees: Python, LightGBM; Neural Network: Python, TensorFlow, Keras,
- Each B_k uses exactly the same TD and ETD for each T_i model.
- No Regression models can be obtained by Logistic Regression. So, this Data Analysis technique is benchmarked only for Classification or Scoring problems.
- The target is to obtain the highest Performance and the highest Intelligibility scores (top-right corner of the graph).

PERFORMANCE Score

For each Bk, we calculate the values of the Performance Criterion (PC) on the same ETD for all the Ti top-CVEs; and on the same TD and ETDs for all the Ti top-IVEs. The PC is: RMSE in percentage for a Regression; F1-Score for a Binomial Classification; Average F1-Score or Average F2-Score for a Multinomial Classification; Gini index for a Scoring. Then, we compare the value of the PC of each T_i top-CVE (resp. top-IVE) to the best value of this PC reached by the best T_i top-CVE (resp. top-IVE) on ETD (resp. on TD and ETDs).

For Regression, we calculate for each T_i top-model (CVE and IVE): $PS(T_i, B_k) = Best_PC(B_k) - PC(T_i, B_k)$.

For Classification and Scoring, we calculate for each T_i top-model: $PS(T_i, B_k) = PC(T_i, B_k) - Best_PC(B_k)$.

Performance Score of T_i $PS(T_i) = Mean (PS(T_i, B_k))_{k \in [1 \cdot n]}$

Remark:

Each PS varies theoretically from -100 (Lowest Score) to 0 (Highest Score), but practically between -50 and 0.

INTELLIGIBILITY Score

We consider the T_i top-IVE. Its Intelligibility Score IS(T_i) is valued from 0.00 to 5.00 regarding the structure of the model: number of predictors, classes, rules, equations, trees, synthetic variables, modalities to predict for classifications (or numeric variables to predict for regressions or scoring). The more compact the model, the higher its IS.

The IS of each T_i is obtained by accumulating the following five penalty values to the ideal IS value of 5.00 (each penalty has a null or a negative value):

Penalty 1 (logarithmic penalty regarding the number of predictors): **Pen1**(T_i) = min(0, 1 - log₁₀ number of predictors) Pen1 = 0.00 for up to 10 predictors Examples:

Pen1 = -3.00 for 10.000 predictors

Penalty 2 (linear penalty regarding the average number of rules or equations per modality to predict): $Pen2(T_i) = min(0, 0.01 - \frac{average number of rules or equations per modality to predict)$

	•	100	
Examples:		Pen2 = 0.00 for 1 rule or equation per modality to predict on average	
		Pen2 = -3.00 for 301 rules or equations per modality to predict on avera	ige

- Penalty 3 (linear penalty regarding the average number of predictors per rule or equation): **Pen3**(T_i) = min $\left(0, \frac{9-3 \times average number of predictors per rule or equation)$ Examples: Pen3 = 0.00 for up to 3.0 predictors per rule or equation on average Pen3 = -3.00 for 10.0 predictors per rule or equation on average
- Penalty 4 (linear penalty regarding the number of chained trees, here for BT only): **Pen4**(T_i) = min(0.1 – number of chained trees) Examples: Pen4 = 0.00 for 1 tree

Pen4 = -3.00 for 4 chained trees

Penalty 5 (maximum penalty due to unintelligibility of synthetic variables, here for NN only): **Pen5**(T_i) = -5

Intelligibility Score of T_i

 $IS(T_i) = max(0.00, 5.00 + (Pen1+Pen2+Pen3+Pen4+Pen5))$

Remarks:

- For the difference between the Intelligibility and the Explainability of a model, please see the XTRACTIS[®] Brochure, page 7.
- The real complexity of the process/phenomenon under study is intrinsic, i.e., it could not be reduced or simplified, but only discovered; thus, the top-model will be complex if the process/phenomenon turns out to be complex [Zalila 2017]. Consequently, for some complex process/phenomenon, IS can be equal to 3.00 or less, even if Ti natively produces intelligible models (XTRACTIS, Random Forests).
- For similar structures, the Boosted Trees model is always less intelligible than the Random Forest one, as it is composed of chains of trees, instead of a college of trees (cf. Penalty 4).
- Neural Network model has always the lowest IS of 0.00, because it uses synthetic unintelligible variables (hidden nodes) in addition to all the potential predictors (cf. Penalty 5).

APPENDIX 2 – Use Case Results (all Performance criteria of all Top-Models)

Performance Criterion	Classification Error	Min. Sensitivity	Average Sensitivity	Min. PPV	Average PPV	Min. F ₁ -Score	Average F ₁ -Score	Weighted Av. F ₁ -Score	Refusal
RANDOM MODEL		1	11			11			
Nb of Random Permutations (P-value) = 100,000 (0.001%)									
Performance against chance	35.29%	50.00%	55.66%	50.00%	55.66%	50.00%	55.66%	64.71%	
TRACTIS TOP-MODEL									
CVE - Descriptive Performance (Training)	4.88%	90.00%	94.71%	89.39%	95.07%	93.65%	94.73%	95.13%	0 (0.00%)
CVE - Predictive Performance (Validation)	5.23%	92.81%	95.94%	84.51%	93.63%	91.60%	94.53%	94.85%	0 (0.00%)
CVE - Real Performance (External Test)	9.80%	86.67%	92.22%	73.33%	89.88%	84.62%	90.19%	90.49%	0 (0.00%)
IVE - Descriptive Performance (Training)	0.93%	98.80%	99.23%	97.87%	98.86%	98.54%	99.05%	99.07%	30 (0.62%)
IVE - Predictive Performance (Validation)	1.13%	98.72%	98.96%	97.55%	98.72%	98.24%	98.84%	98.87%	34 (0.72%)
IVE - Real Performance (Test)	1.87%	97.87%	98.23%	96.42%	97.90%	97.14%	98.07%	98.13%	38 (0.80%)
IVE - Real Performance (287 original points)	6.67%	92.17%	94.02%	82.86%	92.43%	89.23%	93.01%	93.43%	2 (0.70%)
IVE - Real Performance (External Test)	9.80%	86.67%	92.22%	73.33%	89.88%	84.62%	90.19%	90.49%	0 (0.00%)
OGISTIC REGRESSION TOP-MODEL									
CVE - Descriptive Performance (Training)	14.63%	77.25%	90.19%	64.77%	83.72%	77.03%	85.56%	85.72%	
CVE - Predictive Performance (Validation)	17.07%	75.45%	87.37%	62.07%	81.33%	73.47%	83.08%	83.32%	
CVE - Real Performance (External Test)	19.61%	70.00%	86.97%	58.82%	79.20%	71.43%	81.04%	80.74%	
IVE - Descriptive Performance (Training)	15.33%	77.25%	89.08%	63.95%	82.97%	75.34%	84.81%	85.04%	
IVE - Real Performance (External Test)	17.65%	73.33%	88.08%	62.50%	80.50%	74.07%	82.67%	82.64%	
ANDOM FOREST TOP-MODEL									
CVE - Descriptive Performance (Training)	9.41%	86.67%	89.27%	82.81%	90.70%	85.48%	89.84%	90.64%	
CVE - Predictive Performance (Validation)	14.29%	78.33%	84.34%	73.44%	85.16%	75.81%	84.67%	85.82%	
CVE - Real Performance (External Test)	25.49%	63.64%	75.66%	46.67%	76.05%	53.85%	75.26%	75.60%	
IVE - Descriptive Performance (Training)	11.85%	85.00%	87.52%	76.12%	87.60%	80.31%	87.42%	88.29%	
IVE - Real Performance (External Test)	27.45%	63.64%	74.55%	43.75%	74.84%	51.85%	73.86%	73.88%	
BOOSTED TREES TOP-MODEL									
CVE - Descriptive Performance (Training)	6.62%	83.33%	90.87%	91.57%	94.72%	87.72%	92.62%	93.32%	
CVE - Predictive Performance (Validation)	12.20%	76.67%	85.54%	80.70%	87.76%	78.63%	86.58%	87.76%	
CVE - Real Performance (External Test)	23.53%	64.64%	76.77%	50.00%	77.38%	56.00%	76.68%	77.31%	
IVE - Descriptive Performance (Training)	2.09%	93.33%	97.02%	97.08%	98.44%	95.73%	97.70%	97.90%	
IVE - Real Performance (External Test)	19.61%	63.64%	78.99%	63.64%	78.99%	63.64%	78.99%	80.39%	
	19.01%	05.04%	70.55%	00.04%	10.55%	03.04%	10.99%	00.39%	
EURAL NETWORK TOP-MODEL									
CVE - Descriptive Performance (Training)	4.88%	93.33%	95.07%	88.89%	94.52%	91.06%	94.77%	95.15%	
CVE - Predictive Performance (Validation)	3.14%	96.67%	96.78%	92.06%	96.55%	94.31%	96.64%	96.88%	
CVE - Real Performance (External Test)	9.80%	90.00%	90.30%	76.92%	90.01%	83.33%	89.87%	90.39%	
IVE - Descriptive Performance (Training)	3.48%	95.81%	96.94%	89.23%	95.80%	92.80%	96.31%	96.56%	
IVE - Real Performance (External Test)	9.80%	90.00%	90.30%	76.92%	90.01%	83.33%	89.87 %	90.39%	

The entirety of this document is protected by copyright. All rights are reserved, particularly the rights of reproduction and distribution. Quotations from any part of the document must necessarily include the following reference: Zalila, Z., Intellitech & Xtractis (2023-2024). XTRACTIS® the Reasoning Al for Trusted Decisions. Use Case | Safety & Security: Passive Magnetic Identification of Land Mines – Benchmark vs. Logistic Regression, Random Forests, Boosted Trees & Neural Networks. INTELLITECH [intelligent technologies], February 2024, v3.0, Compiegne, France, 6p.