

Cyber Security

LOG-BASED DETECTION OF CYBER INTRUSIONS (DARPA)

Benchmark vs. Logistic Regression, Random Forests, Boosted Trees & Neural Networks

2024/02 (v5.0)

xtractis.ai

GOAL	Design an AI-based decision system that accurately diagnoses an intrusion on a computer network from features of the connection logs, to instantly execute the appropriate rational action.									
PROS & BENEFITS	cybersecurity sp	racteristics of logs defining a cyber intrusion. Enhance expert knowledge by helping pecialists understand the causal relationships between specific log features, their d the existence of an intrusion.								
	•	cyberattacks as early as possible and understand the underlying strategy of the r to consider measures to thwart future attacks.								
	 Avoid many false alarms thanks to transparent diagnosis, in a context of increasing number of attacks with the use of open-source AI algorithms. 									
REFERENCE DATA	Variable to Predict	The model predicts the connection state: NORMAL INTRUSION .								
Source: Cyber Systems and Technology group of MIT Lincoln Laboratory, DARPA ITO, Air Force Research	Predictive Variables	41 Potential Predictors characterizing each log: duration, protocol type, network service, number of data bytes from source to destination, flag status of connection								
Laboratory [UCI Machine Learning Repository].	Observations	 1,074,983 connection logs on the US Air Force military computer network. Each log is associated with a normal activity or an attack. Data are divided into a Learning Dataset for model induction using Training, Validation and Test Datasets, and an External Test Dataset (ETD#1) with an environment close to the learning one to check the top model's performance on real data and for benchmarking. 								
	An additional dataset of 70,874 connections corresponding to a network envi that has strongly changed is used as a second External Test Dataset (ETD#2). All duplicates were removed from the reference dataset to avoid biasing performance asses									
	Learning Dataset: 859,9 70% for Training, 15% for Valida NORMAL 650,239 75.61% 2	184 logs 80% FTD#1·214 999 logs 20% FTD#2·70 874 logs								

MODEL TYPE

Regression

Multinomial Classification Binomial Classification

Scoring

XTRACTIS-INDUCED DECISION SYSTEM

 Intelligible Model, Explainable Decisions 	The top-model is a decision system composed of 25 gradual rules without chaining , each rule uses some of the 26 variables that XTRACTIS identified as predictors. Moreover, only a few rules are triggered at a time to compute the decision.
High Predictive Capacity	It has a very good to excellent Real Performance (on unknown data).
☑ Efficient Al System	It computes real-time predictions up to 70,000 decisions/second, offline or online (API).

XTRACTIS for Cyber Security: Log-based Detection of Cyber Intrusions (DARPA) – February 2024 © Z. ZALILA & INTELLITECH [intelligent technologies]. 2002-2024. All Rights Reserved.

STEPS	Delogs	$() \rightarrow$		Logs				
	Reference Data	INDUCTION	XTRACTIS Top-Model	New Cases	DEDUCTION		ed Decision ct attack)	
SOFTWARE ROBOTS	Delivers the decisior	XTRACTIS [®] REV a system + its Structu	/EAL ire & Performance Reports	XTRACTIS[®] PREDICT Delivers the decision + the Prediction Report explaining its reas				

TOP-MODEL INDUCTION

XTRACTIS PROCESS

INDUCTION
PARAMETERS1. We launch 500 inductive reasoning strategies; each strategy is applied to the same single partition
of the learning dataset (70% Training / 15% Validation / 15% Test) to get a reliable assessment of
the descriptive and predictive performances, respectively from Training and Validation Datasets.

- 2. Each strategy thus generates one unitary model called Individual Virtual Expert (IVE).
- Among the 500 induced models, the top-IVE is the one that has the best predictive performance, close to its descriptive performance, and with the fewer predictors and rules: 25 rules sharing 26 predictors.

Total number of induced unitary models	Criterion for the induction optimization	Validation criterion for the top-model selection	Duration of the process (Induction Power FP64)		
500 IVEs	F ₁ -Score	F ₁ -Score	4 days (24 Tflops)		

TOP-MODEL STRUCTURE The top-model has a very good intelligibility as it has only 25 rules combining the 26 predictors that XTRACTIS automatically selected out of 41 variables. The Structure Report reveals all the internal logic of the decision system and ensures that the model is understandable by the human expert. It is a transparent model that can be audited and certified before deployment to end-users.

PREDICTORS

- 26 log characteristics (out of 41)
- 23 continuous + 3 nominal variables
- Ranked by impact significance (4 strong, 11 medium & 11 weak signals): #1 src_bytes_1450Clip ... / #2 duration_3Clip ...
- Labeled by fuzzy and binary classes
 Examples: binary interval "inf to 0.340";
 fuzzy interval "inf to about 0.371"

RULES

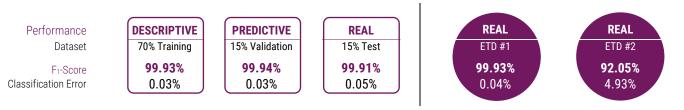
- 25 connective fuzzy rules without chaining (aggregated into 2 disjunctive fuzzy rules)
- 3 to 8 predictors per rule (on average, 5.6 predictors per rule)
- Example: **fuzzy rule R21** uses 3 predictors to conclude "INTRUSION". 24 other fuzzy rules complete this model.

IF	same_srv_rate	IS	inf to about 0.371
AND	dst_host_same_srv_rate	IS	inf to 0.340
AND	src_bytes_1450Clip	IS	{0}
THEN	I Connection	IS	INTRUSION

Literally, the connection is an intrusion if the rate of connections to the same service of the same target during the last 2 seconds is inferior to around 37% and the rate of connections, among the last 100, to the same service of the same target is inferior to 34%, and the number of data bytes sent by the source to the target is zero.

TOP-MODEL PERFORMANCE

The top-IVE performances, measured in Training/Validation/Test, then in External Test on ETD#1 and ETD#2, guarantee the model's predictive and real performances.



EXPLAINED PREDICTIONS FOR 3 UNKNOWN CASES

() Real

Time

(1) Real

 \odot

Real

Time

Powered by: XTRACTIS* v12.1.42925

NEW CASE (from the External Datase

(from the External Dataset, i.e., not included in the Learning Dataset)

LOG V_161144

actual value = INTRUS	ION
rerror_rate	1.000
same_srv_rate	0.030
diff_srv_rate	0.060
dst_host_count	255
dst_host_srv_count	9
dst_host_same_srv_rate	0.040
dst_host_diff_srv_rate	0.060
dst_host_same_src_port_rate	0.000
duration_3Clip	0.00
src_bytes_1450Clip	0
srv_count_35Clip	9.0
protocol_typ	tcp
service	smtp
flag	RSTO

DEDUCTIVE INFERENCE OF RULES

For this connection, 3 rules are triggered: **R21** and **R22** at 1.000, **R10** at 0.381. The 22 other rules are not activated.

AUTOMATED DECISION

ed:	NUMBER OF TRIGGERED RULES 3 / 25
	FUZZY PREDICTION
	{ INTRUSION 1.000, NORMAL 0.381 }
0.9 1.0	FINAL PREDICTION { INTRUSION }
	The system delivers the correct diagnosis compared to that given by the cyber expert:
ed:	

LOG V_100052								
actual value = NORMAL								
rerror_rate	0.000							
same_srv_rate	1.000							
diff_srv_rate	0.000							
dst_host_count	28							
dst_host_srv_count	11							
dst_host_same_srv_rate	0.390							
dst_host_diff_srv_rate	0.110							
dst_host_same_src_port_rate	0.040							
duration_3Clip	3.00							
src_bytes_1450Clip	241							
srv_count_35Clip	1.0							
protocol_typ	tcp							
service	ftp							
flag	SF							

For this connection, 2 rules are triggered: **R2** at 1.000 and **R23** at 0.037. The 23 other rules are not activated.

NUMBER OF TRIGGERED RULES
2 / 25
FUZZY PREDICTION
{ NORMAL 1.000,
INTRUSION 0.037 }
FINAL PREDICTION
{ NORMAL }

The system delivers the correct diagnosis compared to that given by the cyber expert:

NUMBER OF TRIGGERED RULES

LOG V_41490

actual value = NORM	AL
rerror_rate	0.000
same_srv_rate	1.000
diff_srv_rate	0.000
dst_host_count	12
dst_host_srv_count	12
dst_host_same_srv_rate	1.000
dst_host_diff_srv_rate	0.000
dst_host_same_src_port_rate	1.000
duration_3Clip	0.00
src_bytes_1450Clip	30
srv_count_35Clip	1.0
protocol_typ	icmp
service	ecr_i
flag	SF

For this connection, 3 rules are triggered: **R6** and **R18** at 1.000, **R5** at 0.703. The 22 other rules are not activated.

3 / 25 FUZZY PREDICTION { NORMAL | 1.000, INTRUSION | 1.000 } FINAL PREDICTION REFUSAL The eventem connect deliver o velid

The system cannot deliver a valid diagnosis, so it refuses to decide.

This conflicting situation is a warning for cyber experts to analyze this log in depth.

More training data with situations near this log profile should strengthen the model in this decision space area.

XTRACTIS for Cyber Security: Log-based Detection of Cyber Intrusions (DARPA) – February 2024 © Z. ZALILA & INTELLITECH [intelligent technologies]. 2002-2024. All Rights Reserved.

TOP-MODELS BENCHMARK

	XTRACTIS 🔣	LOGISTIC REGRESSION	RANDOM FOREST	BOOSTED TREES	NEURAL NETWORK		
MODELS RELEASE	2022/07	2022/09	2022/07	2022/07	2022/07		
ALGORITHM VERSION	XTRACTIS REVEAL 12.1.42925 Python 3.7 Scikit-Learn 1.0.2		Python 3.7 LightGBM 2.2.2	Python 3.7 LightGBM 2.2.2	Python 3.7 TensorFlow 2.6.2 Keras 2.6.0		
ALGORITHM VERSION CROSS-VALIDATION TECHNIQUE	All ex	plored strategies for all algorithms u	se the same single-split of the Learn	ing Dataset: 70% Training 15% Validatio	on 15% Test		
NUMBER OF EXPLORED 500 induction strategies STRATEGIES ⁽¹⁾ 500 induction strategies TOP-MODEL SELECTION ⁽²⁾ Top-IVE among 500 IVEs		500 data analysis strategies	500 ML strategies	500 ML strategies	500 ML strategies		
TOP-MODEL SELECTION ⁽²⁾	SELECTION ⁽²⁾ Top-IVE among 500 IVEs Top-IVE among 500 IVEs		Top-IVE among 500 IVEs	Top-IVE among 500 IVEs	Top-IVE among 500 IVEs		
NUMBER OF PREDICTORS (out of 41 Potential Predictors)	26	32	36	32	122 3 nominal variables are decomposed into 84 binary variables		
AVERAGE NUMBER OF PREDICTORS PER RULE / EQUATION	5.6 per rule	32.0 per equation	9.0 per rule	6.9 per rule	68.5 per equation		
STRUCTURE OF THE DECISION SYSTEM	25 fuzzy rules without chaining (aggregated into 2 disjunctive fuzzy rules)	1 linear equation	24 trees without chaining 3,023 binary rules	1 chain of 148 trees 8,393 binary rules	4 hidden layers 72 hidden nodes 73 equations		
	Only a few rules are triggered at a time to compute a decision			Tree #N corrects the error of the N-1 previous trees	72 unintelligible synthetic variables		

INTELLIGIBILITY × **PERFORMANCE SCORES** (Performance Score is calculated on all available unknown data)

	Random ⁽³⁾	XTRACTIS	LoR	RFo						INTELI	ELLIGIBILITY Score			
	Ranuome	ATRACTIS	LOR	KFU	ВТ	ININ	0	I	0	1	2 3	4	5	
INTELLIGIBILITY Score ⁽⁴⁾		3.36	0.00	0.00	0.00	0.00	e	BT			XTRACTIS		Ŷ	
IVE Real Performance (F1-Score) in Test		99.91	98.95	99.89	99.98	99.89	Scol							
Gap to Leader in Test		-0.07	-1.03	-0.09	0.00	-0.09		DEs						
IVE Real Perf. (F1-Score) in External Test #1	24.90	99.93	98.95	99.91	99.96	99.90	ORMANCE -5	RFo						
Gap to Leader in External Test #1		-0.03	-1.01	-0.05	0.00	-0.06	NR -							
IVE Real Perf. (F1-Score) in External Test #2	33.65	92.05	85.41	87.04	89.73	86.64	PERFO							
Gap to Leader in External Test #2		0.00	-6.64	-5.01	-2.32	-5.41	Б	LoR						
IVE Average Real Performance	29.28	97.30	94.44	95.61	96.55	95.48								
PERFORMANCE Score ⁽⁴⁾		-0.03	-2.89	-1.72	-0.77	-1.85	-4							

(1) For all algos: on the same Learning Dataset. All Models are optimized according to their validation F1-Score.

(2) All top-models are selected according to their validation F1-Score while checking that it remains close to their training F1-Score.

(3) Baseline performances that models must exceed to perform better than chance (P-value = 0.001; 100,000 models generated by random permutation of the output values). The value of each performance criterion is generally achieved by a different random model. (4) See Appendices for explanations and detailed results. More Use Cases: xtractis.ai/use-cases/

APPENDIX 1 – Calculation of the Intelligibility × Performance

Al Technique #i	Ti	$i \in [1; n]$ n = number of AI Techniques benchmarked in terms of data-driven modeling = 5
Benchmark #k	B _k	k∈[1 ; p] p = number of Benchmarks for the Use Case \in {1, 2, 3}

Remarks:

- In case of a small number of reference data, a CVE model (College of Virtual Experts) is generated by each explored strategy of T_i, generally via an N×K-fold cross validation. In this case, a Benchmark is led with the top-CVE on the External Test Dataset (ETD, composed of unknown reference cases). Then, a top-IVE model (Individual Virtual Expert) is generated from the top-CVE, through the XTRACTIS® reverse-engineering process, or for the other Ti, by applying the top-strategy, which has generated the top-CVE, on the training and validation datasets. And a second Benchmark is led with this top-IVE on the same ETD.
- In case of a huge number of reference data, an IVE is generated by each explored strategy of T_i, via a 1-split validation. In this case. Benchmarks are led with the top-IVE on the Test Dataset (TD, composed of unknown reference cases) and on the available ETDs.
- Each Benchmark uses the latest versions of the following algorithms available at the date of the benchmark. XTRACTIS[®]: REVEAL; Logistic Regression: Python, Scikit-Learn; Random Forest & Boost Trees: Python, LightGBM; Neural Network: Python, TensorFlow, Keras,
- Each B_k uses exactly the same TD and ETD for each T_i model.
- No Regression models can be obtained by Logistic Regression. So, this Data Analysis technique is benchmarked only for Classification or Scoring problems.
- The target is to obtain the highest Performance and the highest Intelligibility scores (top-right corner of the graph).

PERFORMANCE Score

For each Bk, we calculate the values of the Performance Criterion (PC) on the same ETD for all the Ti top-CVEs; and on the same TD and ETDs for all the Ti top-IVEs. The PC is: RMSE in percentage for a Regression; F1-Score for a Binomial Classification; Average F1-Score or Average F2-Score for a Multinomial Classification; Gini index for a Scoring. Then, we compare the value of the PC of each T_i top-CVE (resp. top-IVE) to the best value of this PC reached by the best T_i top-CVE (resp. top-IVE) on ETD (resp. on TD and ETDs).

For Regression, we calculate for each T_i top-model (CVE and IVE): $PS(T_i, B_k) = Best_PC(B_k) - PC(T_i, B_k)$.

For Classification and Scoring, we calculate for each T_i top-model: $PS(T_i, B_k) = PC(T_i, B_k) - Best_PC(B_k)$.

Performance Score of T_i $PS(T_i) = Mean (PS(T_i, B_k))_{k \in [1 \cdot n]}$

Remark:

Each PS varies theoretically from -100 (Lowest Score) to 0 (Highest Score), but practically between -50 and 0.

INTELLIGIBILITY Score

We consider the T_i top-IVE. Its Intelligibility Score IS(T_i) is valued from 0.00 to 5.00 regarding the structure of the model: number of predictors, classes, rules, equations, trees, synthetic variables, modalities to predict for classifications (or numeric variables to predict for regressions or scoring). The more compact the model, the higher its IS.

The IS of each T_i is obtained by accumulating the following five penalty values to the ideal IS value of 5.00 (each penalty has a null or a negative value):

Penalty 1 (logarithmic penalty regarding the number of predictors): **Pen1**(T_i) = min(0, 1 - log₁₀ number of predictors) Pen1 = 0.00 for up to 10 predictors Examples:

Pen1 = -3.00 for 10.000 predictors

Penalty 2 (linear penalty regarding the average number of rules or equations per modality to predict): $Pen2(T_i) = min(0, 0.01 - \frac{average number of rules or equations per modality to predict)$

	•	100	
Examples:		Pen2 = 0.00 for 1 rule or equation per modality to predict on average	
		Pen2 = -3.00 for 301 rules or equations per modality to predict on avera	ige

- Penalty 3 (linear penalty regarding the average number of predictors per rule or equation): **Pen3**(T_i) = min $\left(0, \frac{9-3 \times average number of predictors per rule or equation)$ Examples: Pen3 = 0.00 for up to 3.0 predictors per rule or equation on average Pen3 = -3.00 for 10.0 predictors per rule or equation on average
- Penalty 4 (linear penalty regarding the number of chained trees, here for BT only): **Pen4**(T_i) = min(0, 1 - number of chained trees) Examples: Pen4 = 0.00 for 1 tree

Pen4 = -3.00 for 4 chained trees

Penalty 5 (maximum penalty due to unintelligibility of synthetic variables, here for NN only): **Pen5**(T_i) = -5

Intelligibility Score of T_i

 $IS(T_i) = max(0.00, 5.00 + (Pen1+Pen2+Pen3+Pen4+Pen5))$

Remarks:

- For the difference between the Intelligibility and the Explainability of a model, please see the XTRACTIS[®] Brochure, page 7.
- The real complexity of the process/phenomenon under study is intrinsic, i.e., it could not be reduced or simplified, but only discovered; thus, the top-model will be complex if the process/phenomenon turns out to be complex [Zalila 2017]. Consequently, for some complex process/phenomenon, IS can be equal to 3.00 or less, even if Ti natively produces intelligible models (XTRACTIS, Random Forests).
- For similar structures, the Boosted Trees model is always less intelligible than the Random Forest one, as it is composed of chains of trees, instead of a college of trees (cf. Penalty 4).
- Neural Network model has always the lowest IS of 0.00, because it uses synthetic unintelligible variables (hidden nodes) in addition to all the potential predictors (cf. Penalty 5).

APPENDIX 2 – Use Case Results (all Performance criteria of all Top-Models)

		Min.						
Performance Criterion	Classification Error	Sensitivity Specificity	Sensitivity	Specificity	PPV	NPV	F ₁ -Score	Refusal
RANDOM MODEL Nb of Random Permutations (P-value) = 100,000 (0.001%)	ļ I	. ,		1				
Performance against chance in External Test 1	36.63%	24.90%					24.90 %	
Performance against chance in External Test 2	43.62%	33.65%					33.65%	
XTRACTIS TOP-MODEL								
Descriptive Performance (Training)	0.03%	99.92%	99.92%	99.98%	99.95%	99.97%	99.93%	1 408 (0.23%)
Predictive Performance (Validation)	0.03%	99.92%	99.92%	99.99%	99.96%	99.98%	99.94%	297 (0.23%)
Real Performance (Test)	0.05%	99.89%	99.89%	99.98%	99.92%	99.96%	99.91%	303 (0.23%)
Real Performance (External Test 1)	0.04%	99.92%	99.92%	99.98%	99.93%	99.97%	99.93%	501 (0.23%)
Real Performance (External Test 2)	4.93%	86.44%	86.44%	99.32%	98.43%	93.70%	92.05%	803 (1.13%)
LOGISTIC REGRESSION TOP-MODEL								
Descriptive Performance (Training)	0.53%	98.60%	98.60%	99.75%	99.21%	99.55%	98.90%	
Predictive Performance (Validation)	0.52%	98.60%	98.60%	99.76%	99.26%	99.55%	98.93%	
Real Performance (Test)		98.64%	98.64%	99.76%	99.26%	99.56%	98.95%	
Real Performance (External Test 1)	0.51%	98.65%	98.65%	99.76%	99.25%	99.57%	98.95%	
Real Performance (External Test 2)		75.28%	75.28%	99.51%	98.69%	89.15%	85.41%	
RANDOM FOREST TOP-MODEL								
Descriptive Performance (Training)	0.04%	99.87%	99.87%	99.99%	99.97%	99.96%	99.92%	
Predictive Performance (Validation)		99.88%	99.88%	99.98%	99.93%	99.96%	99.91%	
Real Performance (Test)		99.83%	99.83%	99.98%	99.95%	99.95%	99.89%	
Real Performance (External Test 1)	0.04%	99.86%	99.86%	99.98%	99.96%	99.95%	99.91%	
Real Performance (External Test 2)		77.95%	77.95%	99.43%	98.53%	90.21%	87.04%	
BOOSTED TREES TOP-MODEL								
Descriptive Performance (Training)	0.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	
Predictive Performance (Validation)	0.01%	99.98%	99.98%	99.99%	99.96%	99.99%	99.97%	
Real Performance (Test)	0.01%	99.99%	99.99%	99.99%	99.97%	100.00%	99.98%	
Real Performance (External Test 1)	0.02%	99.98%	99.98%	99.98%	99.95%	99.99%	99.96%	
Real Performance (External Test 2)	6.29%	83.63%	83.63%	98.64%	96.79%	92.49%	89.73%	
NEURAL NETWORK TOP-MODEL								
Descriptive Performance (Training)	0.05%	99.88%	99.88%	99.98%	99.94%	99.96%	99.91%	
Predictive Performance (Validation)		99.86%	99.86%	99.98%	99.94%	99.95%	99.90%	
Real Performance (Test)	0.06%	99.85%	99.85%	99.97%	99.92%	99.95%	99.89%	
Real Performance (External Test 1)		99.86%	99.86%	99.98%	99.95%	99.95%	99.90%	
Real Performance (External Test 2)	8.01%	79.02%	79.02%	98.34%	95.89%	90.54%	86.64%	

The entirety of this document is protected by copyright. All rights are reserved, particularly the rights of reproduction and distribution. Quotations from any part of the document must necessarily include the following reference: Zalila, Z., Intellitech & Xtractis (2014-2024). XTRACTIS® the Reasoning AI for Trusted Decisions. Use Case | Cyber Security: Log-based Detection of Cyber Intrusions (DARPA) – Benchmark vs. Logistic Regression, Random Forests, Boosted Trees & Neural Networks. INTELLITECH [intelligent technologies], February 2024, v5.0, Compiegne, France, 6p.