USE CASE - DEFENSE / CYBER / SECURITY

Naval Security

ACOUSTIC DETECTION OF UNDERWATER MINES

Benchmark vs. Logistic Regression, Random Forests, Boosted Trees & Neural Networks

2024/02 (v4.0)

xtractis.ai

PROBLEM DEFINITION

GOAL	•	d decision system that accurately and instantly detects underwater mines from quip vessels, submarines, and drones with a detector making rational automated
PROS & BENEFITS	by helping sub	quency bands involved in the detection of underwater mines and enhance knowledge omarine staff and acoustic experts understand the causal relationships between ncy bands, their combination, and the presence of a mine.
		a virtual " Golden Ear " (expert in underwater acoustics) operating 24/7/365 with the f decision, or to design by simulation undetectable mines.
		tary profession in making an earlier and more reliable decision, thanks to rapid, d explainable detection process with limited sensors.
REFERENCE DATA	Variable to Predict	The model identifies detected object: ROCK MINE
Source: Terry Sejnowski, R. Paul Gorman, University of California - San Diego, Allied-	Predictive Variables	60 Potential Predictors are measures included in [0 ; 1] characterizing the energy in a specific frequency band, integrated over a period: Energy in frequency band 1, 2, 3,60
Signal Aerospace Technology Center - Columbia Dataset : Dua, D. and Graff, C. (2019). UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of Information and Computer Science	Observations	208 sonar echoes obtained by bouncing sonar signals off obstacles, at various angles and under various conditions. Data are divided into a Learning Dataset for model induction using Training and Validation Datasets, and an External Test Dataset to check the top model's performance on real data and for benchmarking.
		ROCK MINE ROCK MINE 82 46,59% 94 53.41 % 15 46,87% 17 53.13%
MODEL TYPE	Regress	ion Multinomial Classification Binomial Classification Scoring

XTRACTIS-INDUCED DECISION SYSTEM

 Intelligible Model, Explainable Decisions 	The top-model is a decision system composed of 23 gradual rules without chaining , each rule uses some of the 29 variables that XTRACTIS identified as predictors. Moreover, only a few rules are triggered at a time to compute the decision.
High Predictive Capacity	It has a good Real Performance (on unknown data).
Efficient Al System	It computes real-time predictions up to 70,000 decisions/second, offline or online (API).

XTRACTIS for Naval Security: Acoustic Detection of Underwater Mines – February 2024 © Z. ZALILA & INTELLITECH [intelligent technologies]. 2002-2024. All Rights Reserved.

STEPS		()→	₽	(((ROCK	MINE
	Reference Data	INDUCTION	XTRACTIS Top-Model	New Cases	DEDUCTION		ed Decision et mine)
SOFTWARE ROBOTS	Delivers the decisio	XTRACTIS® REVE	AL & Performance Reports	Delivers th		TIS [®] PREDICT ediction Report exp	plaining its reasoning

TOP-MODEL INDUCTION

XTRACTIS PROCESS

INDUCTION	1.	We launch 2,000 inductive reas
PARAMETERS		Learning Dataset to get a relia

- asoning strategies; each strategy is applied to 40 different 5-fold-partitions of the iable assessment of the descriptive and predictive performances, respectively from Training and Validation Datasets.
- 2. Each strategy thus generates 200 unitary models called Individual Virtual Expert (IVE), whose decisions are aggregated with 3 possible operators into a College of Virtual Experts (CVE).
- 3. Among the 6,000 induced CVEs, the top-CVE with the best predictive performance remains complex: 1,989 rules sharing 60 predictors.

Given the small number of reference cases in the reference dataset, the XTRACTIS $CVE \rightarrow IVE$ Reverse-Engineering process is necessary to get a robust AND intelligible model:

- 4. We build a synthetic dataset composed of 35,200 new cases simulated by deduction from the top-CVE, around the 176 original learning cases but distinct from them.
- 5. We apply 2,000 induction strategies to the same single 34% Training | 33% Validation | 33% Test partition of this new dataset: XTRACTIS induces 2,000 IVEs.
- 6. The top-IVE selected is as efficient as the top-CVE, but more intelligible: 23 rules sharing 29 predictors.

Total number of	Criterion for the induction optimization	Validation criterion for the	Duration of the process
induced unitary models		top-model selection	(Induction Power FP64)
402,000 IVEs	F ₁ -Score	F ₁ -Score	~25 hours (1 Tflops)

TOP-MODEL STRUCTURE The top-IVE model has an excellent intelligibility as it has 23 rules aggregated into 2 disjunctive rules and combining the 29 predictors that XTRACTIS automatically selected out of 60 variables. The Structure Report reveals all the internal logic of the decision system and ensures that the model is understandable by the human expert. It is a transparent model that can be audited and certified before deployment to end-users.

PREDICTORS

- 29 energy measures in frequency bands (out of 60)
- Ranked by impact significance (1 strong, 9 medium & 19 weak signals): #1 Energy in frequency band 11, #2 Energy in frequency band 34...
- Labeled by fuzzy and binary classes Examples: binary interval "inf to 0.276"; fuzzy interval "sup to about 0.724"

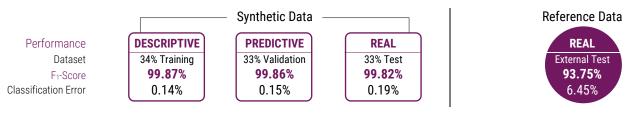
RULES

- 23 connective fuzzy rules without chaining (aggregated into 2 disjunctive fuzzy rules)
- 2 to 6 predictors per rule (on av., 3.9 predictors per rule)
- . Example: fuzzy rule R1 uses 3 predictors and concludes "ROCK". 22 other fuzzy rules complete this model, including 1 binary rule.

	· · ·				3 ,	_
IF		frequency			inf to 0.276	
AND		frequency			sup to ~0.724	
AND	Energy in	frequency	band 45	IS in	~[0.088; 0.312]
THEM	Detecte	d Object		IS	ROCK	
Literally,	the detected	object is Roc	k if the energ	gy in fre	quency band 11 is un	de

0.276, and in band 34 is above approximately 0.724 and in band 45 is between approximately 0.088 and 0.312.

TOP-MODEL PERFORMANCE The top-IVE performances, measured in Training/Validation/Test on synthetic data, then in External Test on reference data, guarantee the model's predictive and real performances.



XTRACTIS for Naval Security: Acoustic Detection of Underwater Mines - February 2024 © Z. ZALILA & INTELLITECH [intelligent technologies]. 2002-2024. All Rights Reserved

EXPLAINED PREDICTIONS FOR 3 UNKNOWN CASES

 $\hat{\mathbf{T}}$

Real

Time

 \rightarrow ROCK 22

R9

 \rightarrow ROCK

0.0

 \rightarrow ROCK R4

R14 \rightarrow MINE

R11

R12 \rightarrow ROCK

••)

 $(\bar{})$

Real Time USE CASE - DEFENSE / CYBER / SECURITY XTRACTIS® Predict Powered by:

NUMBER OF TRIGGERED RULES

4/23

FUZZY PREDICTION

{ MINE | 1.000,

ROCK | 0.318 }

FINAL PREDICTION

{ MINE }

The system delivers a correct detection

compared to the acoustic expert / experiment:

MINE

A

AUTOMATED DECISION

v12.2.43406

i.e., not included in the Learning Data	aset)	
ECH0 #133		
actual value = MINE		
Energy in frequency band 8	0.422	Real
Energy in frequency band 9	0.574	Time
Energy in frequency band 11	0.349	-
Energy in frequency band 12	0.170	
Energy in frequency band 15	0.422	
Energy in frequency band 16	0.531	
Energy in frequency band 19	0.191	
Energy in frequency band 20	0.832	
Energy in frequency band 21*	1.000	
Energy in frequency band 22	0.408	
Energy in frequency band 47	0.133	
Energy in frequency band 49	0.106	
Energy in frequency band 53	0.0081	
Energy in frequency band 54	0.0303	
Energy in frequency band 55	0.0190	

CASE

(from the External Dataset.

ECHO #74	
actual value = ROCK	
Energy in frequency band 8	0.095
Energy in frequency band 9	0.079
Energy in frequency band 11	0.126
Energy in frequency band 12	0.083
Energy in frequency band 15	0.151
Energy in frequency band 16	0.140
Energy in frequency band 19	0.299
Energy in frequency band 20	0.325
Energy in frequency band 21	0.380
Energy in frequency band 22	0.566
Energy in frequency band 47	0.090
Energy in frequency band 49	0.045
Energy in frequency band 53	0.0072
Energy in frequency band 54	0.0113
Energy in frequency band 55	0.0012

ECHO #134

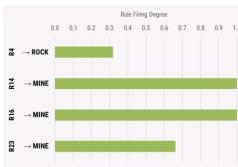
actual value = MINE	
Energy in frequency band 8	0.268
Energy in frequency band 9	0.566
Energy in frequency band 11	0.5
Energy in frequency band 12	0.258
Energy in frequency band 15	0.452
Energy in frequency band 16	0.458
Energy in frequency band 19	0.533
Energy in frequency band 20	0.901
Energy in frequency band 21	0.994
Energy in frequency band 22	0.369
Energy in frequency band 47	0.077
Energy in frequency band 49	0.078
Energy in frequency band 53*	0.039
Energy in frequency band 54	0.0294
Energy in frequency band 55	0.0175

DEDUCTIVE INFERENCE OF RULES

For this signal, 4 rules are triggered:

R14 and R16 at 1.000, and R23 at 0.662, to conclude {MINE}, and R4 at 0.318 to conclude {ROCK}.

The other 19 rules are not activated.



For this signal, 4 rules are triggered:

The other 19 rules are not activated.

For this situation, only 2 conflicting rules are

triggered:

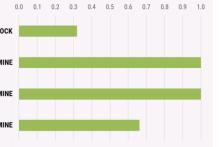
R4 and R14 at 1.000.

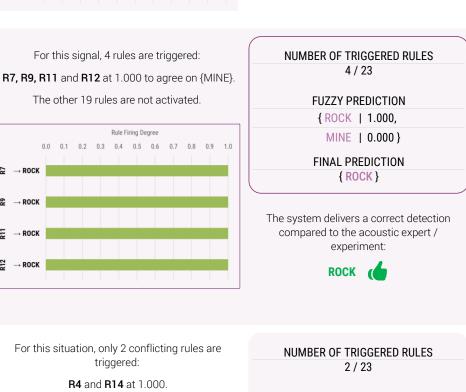
Rule Firing Degree

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1.0

Rule Firing Degree





FUZZY PI	REDICTION
{ ROCK	1.000,
MINE	1.000 }

FINAL PREDICTION REFUSAL

The system cannot decide between the 2 classes so it refuses to decide; this is the only Refusal prediction from the External Test cases. This Refusal could be a warning if the decision system runs in real-time.

More training data with situations near this echo profile should strengthen the model in this decision space area.

*Predictor value outside the variation range of the model (< 0.01 % OOR for case #133 and 8.92 % OOR for case #134) but inside the allowed extrapolation range. XTRACTIS will refuse to give a result for an extrapolation far from the allowed extrapolation range. It is one situation of the "Refusal" prediction.

XTRACTIS for Naval Security: Acoustic Detection of Underwater Mines – February 2024 © Z. ZALILA & INTELLITECH [intelligent technologies]. 2002-2024. All Rights Reserved.

TOP-MODELS BENCHMARK

		XTRACTIS 🤣	LOGISTIC REGRESSION	RANDOM FOREST	BOOSTED TREES	NEURAL NETWORK
(0	MODELS RELEASE	2022/09	2022/10	2021/12	2021/12	2022/02
TER	ALGORITHM VERSION	XTRACTIS REVEAL 12.2.43406	Python 3.9.10 Scikit-Learn 1.1.2	Python 3.6 LightGBM 2.2.2	Python 3.6 LightGBM 2.2.2	Python 3.6 TensorFlow 2.6.2 Keras 2.6.0
PARAMETERS	CROSS-VALIDATION Technique	40×5 folds for each CVE model. Then 1-Split Validation for each IVE model: 34% Training 33% Validation 33% Test	40×5 folds for each CVE model	40×5 folds for each CVE model	40×5 folds for each CVE model	40×5 folds for each CVE model
	NUMBER OF EXPLORED STRATEGIES ⁽¹⁾	2,000 induction strategies for the CVE on Training / Validation data. 2,000 induction strategies for the IVE on synthetic data	2,000 data analysis strategies on Training / Validation data	800 ML strategies on Training / Validation data	800 ML strategies on Training / Validation data	2,000 ML strategies on Training / Validation data
MODELING	TOP-MODEL SELECTION ⁽²⁾	Top-CVE among 6,000 CVEs, then Top-IVE among 2,000 IVEs	Top-CVE selected among 2,000 CVEs, then single model obtained by applying best CVE strategy on 100% of the Learning Dataset	Top-CVE selected among 800 CVEs applying best CVE strategy on 100°		Top-CVE selected among 2,000 CVEs, then single model obtained by applying best CVE strategy on 100% of the Learning Dataset
TURE	NUMBER OF PREDICTORS (out of 60 Potential Predictors)	29	51	55	58	60
EL STRUCTURE	AVERAGE NUMBER OF PREDICTORS PER RULE / EQUATION	3.9 per rule	51.0 per equation	4.1 per rule	3.8 per rule	48.2 per equation
TOP-MODEL	STRUCTURE OF THE DECISION SYSTEM	23 fuzzy rules without chaining (aggregated into 2 disjunctive rules)	1 linear equation	27 trees without chaining 369 binary rules	1 chain of 48 trees 503 binary rules	3 hidden layers 74 hidden nodes 75 equations
TOP		Only a few rules are triggered at a time to compute a decision			Tree #N corrects the error of the N-1 previous trees	74 unintelligible synthetic variables

INTELLIGIBILITY × **PERFORMANCE SCORES** (Performance Score is calculated on all available unknown data)

	Random ⁽³⁾	XTRACTIS	LoR	RFo	BT	NN
INTELLIGIBILITY Score ⁽⁴⁾		4.05	0.00	1.95	0.00	0.00
CVE Real Performance (F1-Score) in External Test		91.43	72.22	88.24	88.24	88.24
Gap to CVE Leader in External Test		0.00	-19.21	-3.19	-3.19	-3.19
IVE Real Performance (F1-Score) in External Test	55.17%	93.75	72.22	85.72	81.25	88.24
Gap to IVE Leader in Test		0.00	-21.53	-8.03	-12.50	-5.51
Top-IVE Average Real Performance	55.17%	92.59	72.22	86.98	84.75	88.24
PERFORMANCE Score ⁽⁴⁾		0.00	-20.37	-5.61	-7.85	-4.35

(1) For all algos: on the same Learning Dataset. All Models are optimized according to their validation F_1 -Score. (2) All top-models are selected according to their validation F_1 -Score while checking that it remains close to their training F_1 -Score.

(3) Baseline performances that models must exceed to perform better than chance (P-value = 0.001; 100,000 models generated by random permutation of the output values). The value of each performance criterion is generally achieved by a different random model. (4) See Appendices for explanations and detailed results.

More Use Cases: xtractis.ai/use-cases/

APPENDIX 1 – Calculation of the Intelligibility × Performance

Al Technique #i	Ti	$i \in [1; n]$ n = number of AI Techniques benchmarked in terms of data-driven modeling = 5
Benchmark #k	B _k	k∈[1 ; p] p = number of Benchmarks for the Use Case \in {1, 2, 3}

Remarks:

- In case of a small number of reference data, a CVE model (College of Virtual Experts) is generated by each explored strategy of T_i, generally via an N×K-fold cross validation. In this case, a Benchmark is led with the top-CVE on the External Test Dataset (ETD, composed of unknown reference cases). Then, a top-IVE model (Individual Virtual Expert) is generated from the top-CVE, through the XTRACTIS® reverse-engineering process, or for the other Ti, by applying the top-strategy, which has generated the top-CVE, on the training and validation datasets. And a second Benchmark is led with this top-IVE on the same ETD.
- In case of a huge number of reference data, an IVE is generated by each explored strategy of T_i, via a 1-split validation. In this case, Benchmarks are led with the top-IVE on the Test Dataset (TD, composed of unknown reference cases) and on the available ETDs.
- Each Benchmark uses the latest versions of the following algorithms available at the date of the benchmark. XTRACTIS[®]: REVEAL; Logistic Regression: Python, Scikit-Learn; Random Forest & Boost Trees: Python, LightGBM; Neural Network: Python, TensorFlow, Keras,
- Each B_k uses exactly the same TD and ETD for each T_i model.
- No Regression models can be obtained by Logistic Regression. So, this Data Analysis technique is benchmarked only for Classification or Scoring problems.
- The target is to obtain the highest Performance and the highest Intelligibility scores (top-right corner of the graph).

PERFORMANCE Score

For each Bk, we calculate the values of the Performance Criterion (PC) on the same ETD for all the Ti top-CVEs; and on the same TD and ETDs for all the Ti top-IVEs. The PC is: RMSE in percentage for a Regression; F1-Score for a Binomial Classification; Average F1-Score or Average F2-Score for a Multinomial Classification; Gini index for a Scoring. Then, we compare the value of the PC of each T_i top-CVE (resp. top-IVE) to the best value of this PC reached by the best T_i top-CVE (resp. top-IVE) on ETD (resp. on TD and ETDs).

For Regression, we calculate for each T_i top-model (CVE and IVE): $PS(T_i, B_k) = Best_PC(B_k) - PC(T_i, B_k)$.

For Classification and Scoring, we calculate for each T_i top-model: $PS(T_i, B_k) = PC(T_i, B_k) - Best_PC(B_k)$.

Performance Score of T_i $PS(T_i) = Mean (PS(T_i, B_k))_{k \in [1 \cdot n]}$

Remark:

Each PS varies theoretically from -100 (Lowest Score) to 0 (Highest Score), but practically between -50 and 0.

INTELLIGIBILITY Score

We consider the T_i top-IVE. Its Intelligibility Score IS(T_i) is valued from 0.00 to 5.00 regarding the structure of the model: number of predictors, classes, rules, equations, trees, synthetic variables, modalities to predict for classifications (or numeric variables to predict for regressions or scoring). The more compact the model, the higher its IS.

The IS of each T_i is obtained by accumulating the following five penalty values to the ideal IS value of 5.00 (each penalty has a null or a negative value):

Penalty 1 (logarithmic penalty regarding the number of predictors): **Pen1**(T_i) = min(0, 1 - log₁₀ number of predictors) Pen1 = 0.00 for up to 10 predictors Examples:

Pen1 = -3.00 for 10.000 predictors

Penalty 2 (linear penalty regarding the average number of rules or equations per modality to predict): $Pen2(T_i) = min(0, 0.01 - \frac{average number of rules or equations per modality to predict)$ 100

	100	
Examples:	Pen2 = 0.00 for 1 rule or equation per modality to predict on average	
	Pen2 = -3.00 for 301 rules or equations per modality to predict on avera	ige

- Penalty 3 (linear penalty regarding the average number of predictors per rule or equation): **Pen3**(T_i) = min $\left(0, \frac{9-3 \times average number of predictors per rule or equation)$ Examples: Pen3 = 0.00 for up to 3.0 predictors per rule or equation on average Pen3 = -3.00 for 10.0 predictors per rule or equation on average
- Penalty 4 (linear penalty regarding the number of chained trees, here for BT only): **Pen4**(T_i) = min(0, 1 - number of chained trees) Examples: Pen4 = 0.00 for 1 tree

Pen4 = -3.00 for 4 chained trees

Penalty 5 (maximum penalty due to unintelligibility of synthetic variables, here for NN only): **Pen5**(T_i) = -5

Intelligibility Score of T_i

 $IS(T_i) = max(0.00, 5.00 + (Pen1+Pen2+Pen3+Pen4+Pen5))$

Remarks:

- For the difference between the Intelligibility and the Explainability of a model, please see the XTRACTIS[®] Brochure, page 7.
- The real complexity of the process/phenomenon under study is intrinsic, i.e., it could not be reduced or simplified, but only discovered; thus, the top-model will be complex if the process/phenomenon turns out to be complex [Zalila 2017]. Consequently, for some complex process/phenomenon, IS can be equal to 3.00 or less, even if Ti natively produces intelligible models (XTRACTIS, Random Forests).
- For similar structures, the Boosted Trees model is always less intelligible than the Random Forest one, as it is composed of chains of trees, instead of a college of trees (cf. Penalty 4).
- Neural Network model has always the lowest IS of 0.00, because it uses synthetic unintelligible variables (hidden nodes) in addition to all the potential predictors (cf. Penalty 5).

APPENDIX 2 – Use Case Results (all Performance criteria of all Top-Models)

Performance Criterion	Classification Error	Min. Sensitivity Specificity	Sensitivity	Specificity	PPV	NPV	F ₁ -Score	Refusal
RANDOM MODEL								
Nb of Random Permutations (P-value) = 100,000 (0.001%)								
Performance against chance	47.90%	48.58%					55.17%	
XTRACTIS TOP-MODEL								
CVE - Descriptive Performance (Training)	0.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	0 (0.00%)
CVE - Predictive Performance (Validation)	0.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	0 (0.00%)
CVE - Real Performance (External Test)	9.38%	86.67%	94.12%	86.67%	88.89%	92.86%	91.43%	0 (0.00%)
IVE - Descriptive Performance (Training)	0.14%	99.82%	99.91%	99.82%	99.84%	99.89%	99.87%	141 (1.18%)
IVE - Predictive Performance (Validation)	0.15%	99.84%	99.84%	99.87%	99.89%	99.81%	99.86%	139 (1.20%)
IVE - Real Performance (Test)	0.19%	99.77%	99.77%	99.85%	99.87%	99.74%	99.82%	152 (1.31%)
IVE - Real Performance (287 original points)	0.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	2 (1.14%)
IVE - Real Performance (External Test)	6.45%	93.33%	93.75%	93.33%	93.75%	93.33%	93.75%	1 (3.13%)
LOGISTIC REGRESSION TOP-MODEL								
CVE - Descriptive Performance (Training)	14.20%	79.27%	91.49%	79.27%	83.50%	89.04%	87.31%	
CVE - Predictive Performance (Validation)	13.07%	79.27%	93.62%	79.27%	83.81%	91.55%	88.44%	
CVE - Real Performance (External Test)	31.25%	60.00%	76.47%	60.00%	68.42%	69.23%	72.22%	
IVE - Descriptive Performance (Training)	16.64%	79.27%	92.55%	79.27%	83.65%	90.28%	87.88%	
IVE - Real Performance (External Test)	31.25%	60.00%	76.47%	60.00%	68.42%	69.23%	72.22%	
RANDOM FOREST TOP-MODEL								
CVE - Descriptive Performance (Training)	0.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	
CVE - Predictive Performance (Validation)	12.50%	79.27%	94.68%	79.27%	83.96%	92.86%	89.00%	
CVE - Real Performance (External Test)	12.50%	86.67%	88.24%	86.67%	88.24%	86.67%	88.24%	
IVE - Descriptive Performance (Training)	0.57%	98.78%	100.00%	98.78%	98.95%	100.00%	99.47%	
IVE - Real Performance (External Test)	15.63%	80.00%	88.24%	80.00%	83.33%	85.71%	85.72%	
BOOSTED TREES TOP-MODEL								
CVE - Descriptive Performance (Training)	0.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	
CVE - Predictive Performance (Validation)	5.11%	93.90%	95.74%	93.90%	84.74%	95.06%	95.24%	
CVE - Real Performance (External Test)	12.50%	86.67%	88.24%	86.67%	88.24%	86.67%	88.24%	
IVE - Descriptive Performance (Training)	0.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	
IVE - Real Performance (External Test)	18.75%	76.47%	76.47%	86.67%	86.67%	76.47%	81.25%	
NEURAL NETWORK TOP-MODEL								
CVE - Descriptive Performance (Training)	0.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	
CVE - Predictive Performance (Validation)	6.25%	90.24%	96.81%	90.24%	91.92%	96.10%	94.30%	
CVE - Real Performance (External Test)	12.50%	86.67%	88.24%	86.67%	88.24%	86.67%	88.24%	
IVE - Descriptive Performance (Training)	1.14%	97.56%	100.00%	97.56%	97.92%	100.00%	98.95%	
IVE - Real Performance (External Test)	12.50%	86.67%	88.24%	86.67%	88.24%	86.67%	88.24%	

The entirety of this document is protected by copyright. All rights are reserved, particularly the rights of reproduction and distribution. Quotations from any part of the document must necessarily include the following reference: Zalila, Z., Intellitech & Xtractis® (2015-2024) XTRACTIS® the Reasoning Al for Trusted Decisions. Use Case | Naval Security: Acoustic Detection of Underwater Mines. Benchmark vs. Logistic Regression, Random Forests, Boosted Trees & Neural Networks. INTELLITECH [intelligent technologies], February 2024, v4.0, Compiègne, France, 6p.